

LAVALLEE BRENSINGER ARCHITECTS

Sparhawk Group

BUILDINGENERGY[®]**BOSTON**

MARCH 20-21, 2025 • WESTIN BOSTON SEAPORT DISTRICT • NESEA.ORG/BE25 Conference + Trade Show of the Northeast Sustainable Energy Association (NESEA)

3.21.25

Bringing New Life to OldBuildings via Air Sealing:2 Housing Facility Case Studies

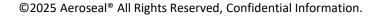
LAVALLEE BRENSINGER ARCHITECTS

2

- Today's speakers
- What we're focused on today
- Air sealing key points
- Hetzel Hall: building envelope air sealing case study
- Jaycee Place: duct air sealing case study
- Q & A/discussion

Today's Speakers

Bill Shadid Aeroseal Strategic Marketing Leader


Sean Landry Lavallee Brensinger Architects Higher Ed Studio Leader

Tom Holmes Aeroseal Bus. Develop. Mgr. Northeast

Matt Holden Sparhawk Group President

What We're Focused On Today

Using Existing Buildings vs. Building New Buildings is a Great Idea

Less Carbon

Less Waste

Good Buildings

©2025 Aeroseal® All Rights Reserved, Confidential Information.

Then Why Don't We Continue Using Existing Buildings More Often?

Older Building With Performance of a New Building? Perceived Complexity Perceived High Cost

Today's Focus: New Life for 2 Existing Buildings

LAVALLEE BRENSINGER ARCHITECTS

©2025 Aeroseal® All Rights Reserved, Confidential Information.

Engineered Building Performance

SparhawkGroup

7

Air Sealing Key Benefits

Air Sealing Key Benefits for the Building Envelope & Ductwork

Benefits of Air Sealing – 1								
Air Sealing Type	Reduced Energy Use & Costs	Increased Comfort	Reduce Moisture in the Ext. Wall	Increased Indoor Air Quality	Reduce Outside Noise	Reduce Insects & other Pests		
Building Envelope								

©2025 Aeroseal® All Rights Reserved, Confidential Information.

Air Sealing Key Benefits for the Building Envelope & Ductwork

Benefits of Air Sealing – 2							
Air Sealing Type	Smaller HVAC System	Increased HVAC System Efficiency	Building Code	High Performance Standards	Gain \$ Incentives		
Building Envelope							
Ductwork							

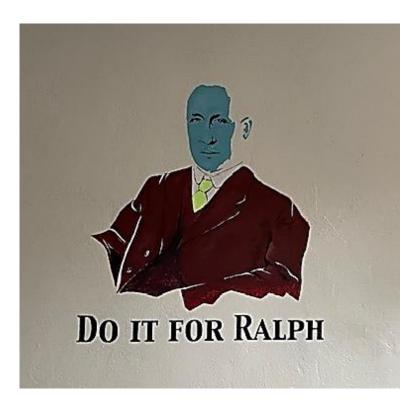
LAVALLEE BRENSINGER ARCHITECTS

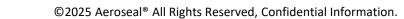
©2025 Aeroseal® All Rights Reserved, Confidential Information.

Hetzel Hall: Building Envelope Air Sealing Case Study

Univ. of New Hampshire Hetzel Hall

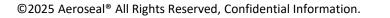
©2025 Aeroseal[®] All Rights Reserved, Confidential Information.


Why Renovate?


- Preservation of History
 - Celebrating 100 years
- University's commitment to sustainability
- Embodied Carbon

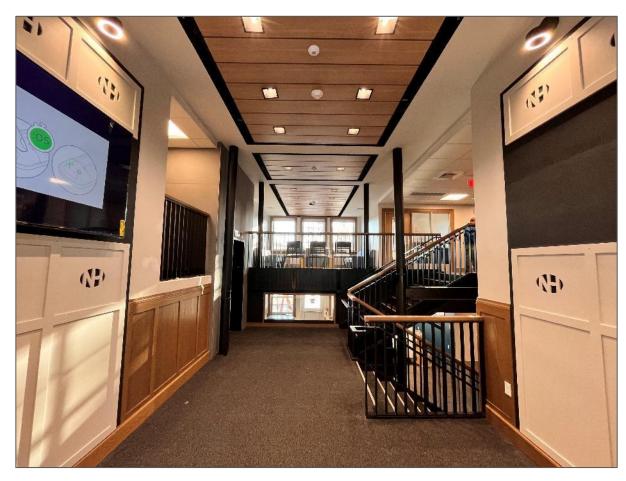
Challenges

- Predictability
 - Schedule
 - Cost \$\$\$



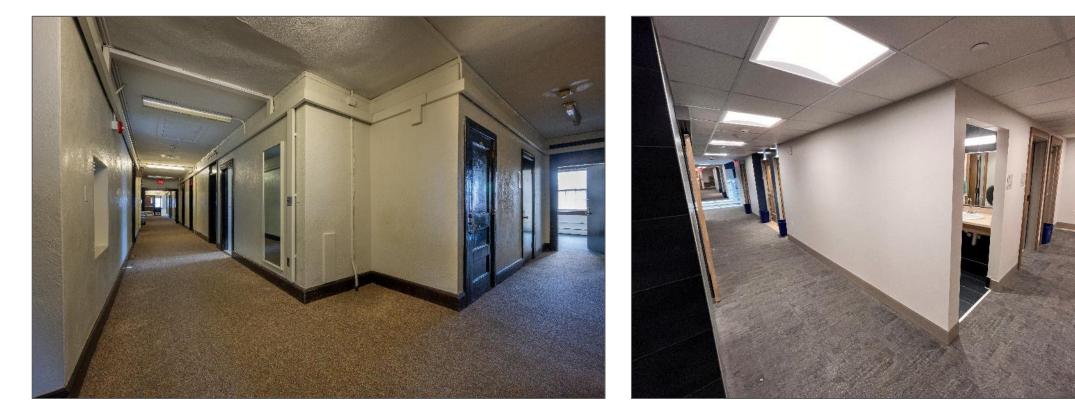
Hetzel Hall: Project Overview

- Building originally constructed in 1925 by EF Huddleston
- Concrete foundations, multi-wythe masonry / terra cotta exterior load bearing walls, wood framed roof
- Cast-in place concrete floor and joist system with steel girders and columns
- Design-build 33,500 sf gut demolition and reconstruction
- 140 beds; 60/40 ratio, singles to doubles
- Issued 4 bid backages in 7 months



Balancing the Past and the Future

Before


After LAVALLEE BRENSINGER ARCHITECTS

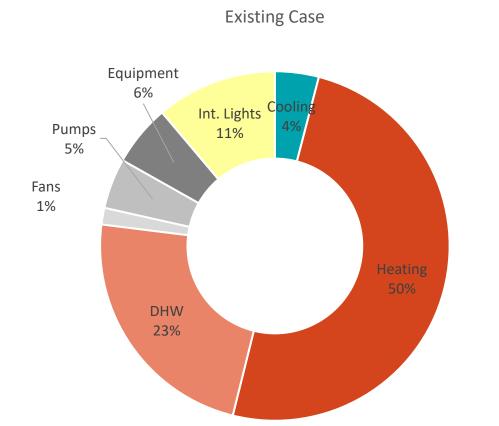
©2025 Aeroseal[®] All Rights Reserved, Confidential Information.

Balancing the Past and the Future

Before

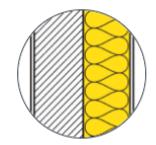
After

Balancing the Past and the Future

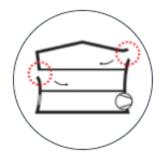

Before

After

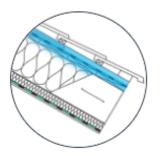
Prioritization of Energy Conservation Measures

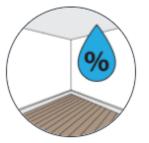

Ducts 9.9% 36.5% Walls 16.7% 9.7% 0.7% 12.9% Glazing Doors Ceilings

©2025 Aeroseal[®] All Rights Reserved, Confidential Information.



Exterior Envelope Goals




Airtightness

Thermal Bridge Elimination

Material Moisture

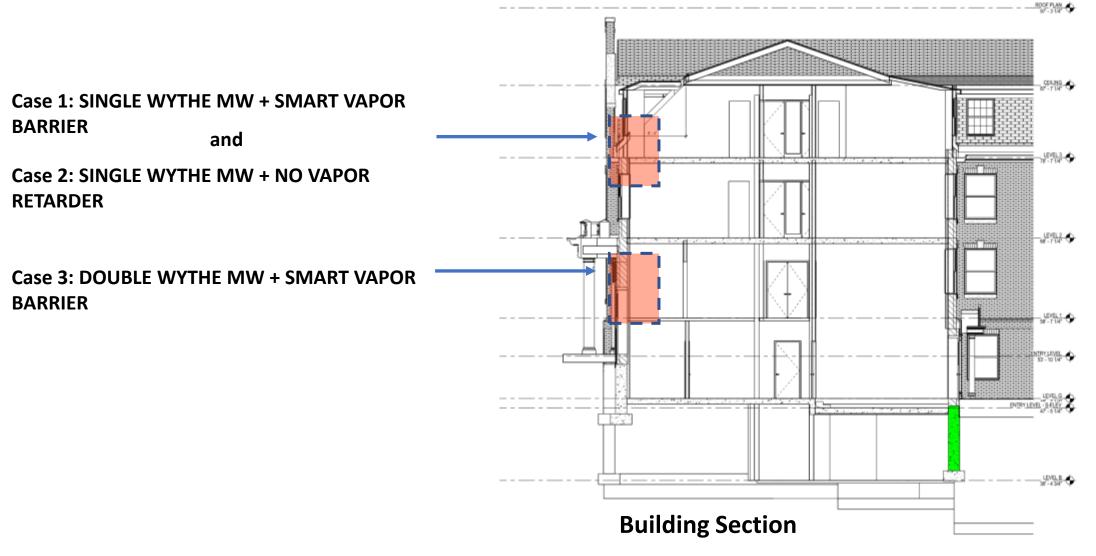
Air Humidity

High Performance Glazing

LAVALLEE BRENSINGER ARCHITECTS

©2025 Aeroseal[®] All Rights Reserved, Confidential Information.

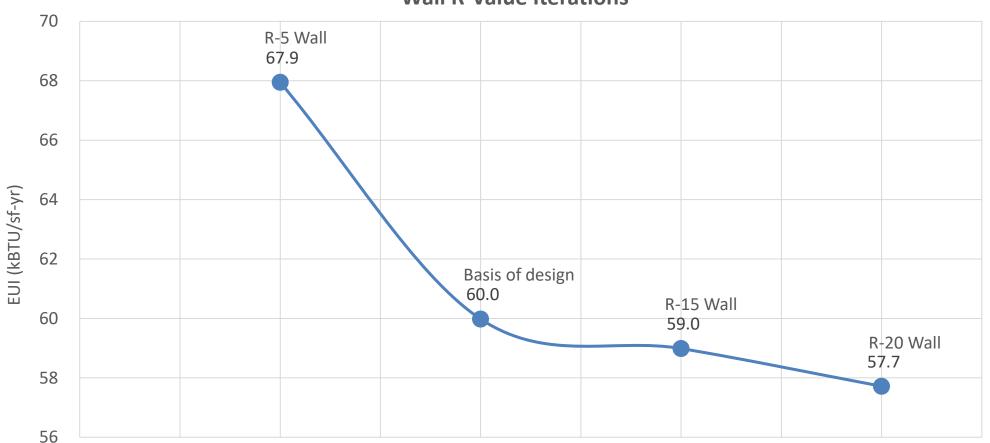
Condition of Interior After Demo & Before Exterior Air Sealing


LAVALLEE BRENSINGER ARCHITECTS

©2025 Aeroseal[®] All Rights Reserved, Confidential Information.

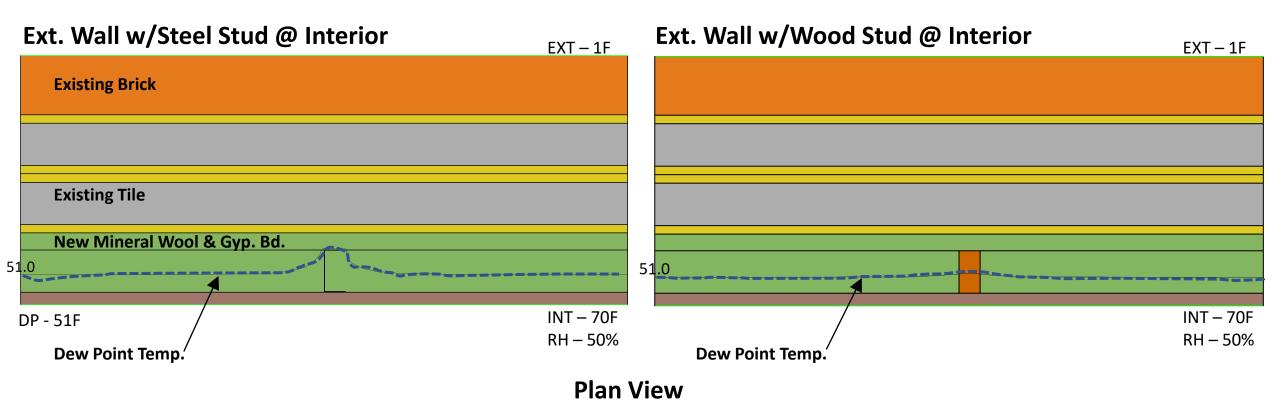
Exterior Wall Improvements Considered

Window Replacement for Thermal & Air Leakage


LAVALLEE BRENSINGER ARCHITECTS

Sparhawk Group

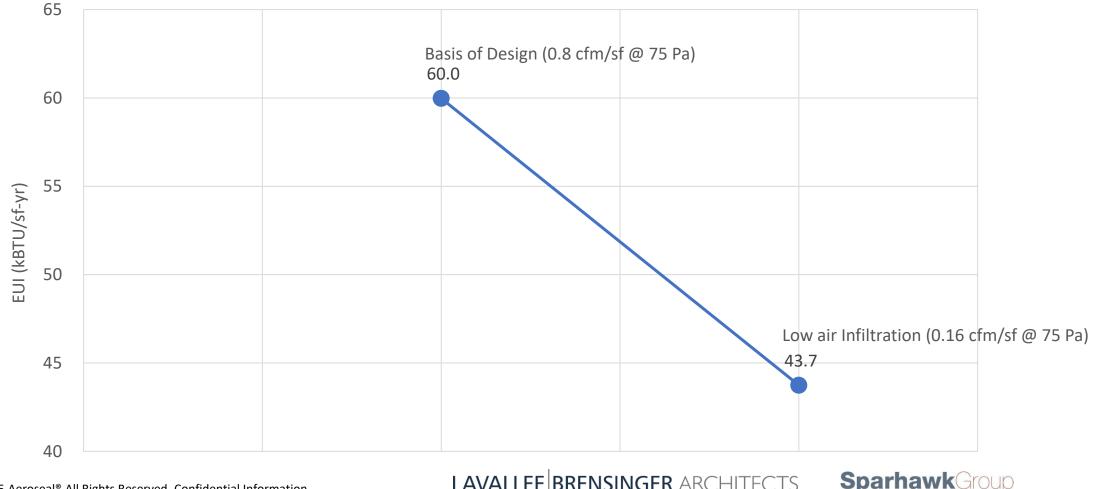
Exterior Wall Optimizations Studied


Wall R-Value Iterations

©2025 Aeroseal® All Rights Reserved, Confidential Information.

Metal vs. Wood Stud Exterior Wall Comparison

©2025 Aeroseal® All Rights Reserved, Confidential Information.



Reducing Infiltration: What We Wanted to Accomplish

Engineered Building Performance

Air Infiltration Iterations

©2025 Aeroseal® All Rights Reserved, Confidential Information.

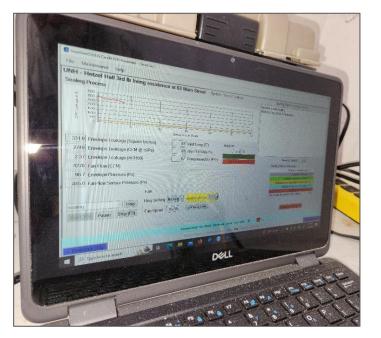
Exterior Envelope Air Sealing Strategy

Parameters

- No changes to building exterior
- Significant reduction in air leakage needed
- Methods and materials to work with existing masonry construction with very small leaks not able to be seen
- Time and cost were important considerations
- Verification of air tightness needed

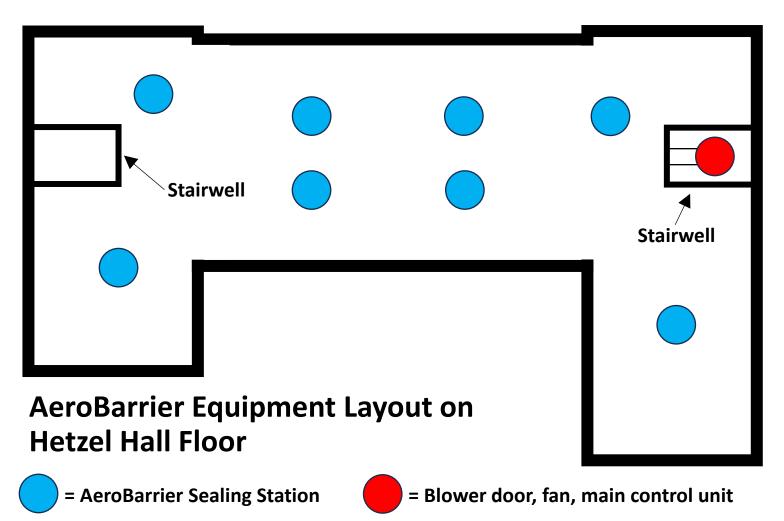
Primary Solution: AeroBarrier

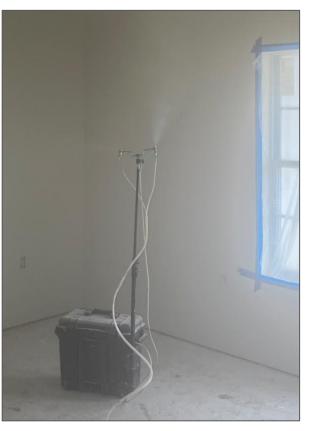
- Seals from the interior
- Proven effective with immediate verification
- Pressurized application with blower door finds and seals even the smallest leaks
- Automation saves time & is cost neutral
- Air tightness known immediately


AeroBarrier Overview

Uses Higher Pressure Inside Blower Door Directed

Computer Automated

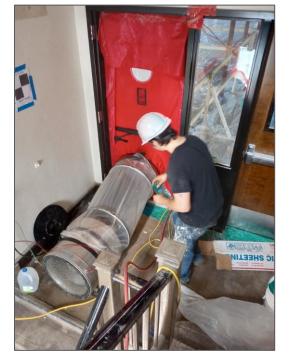



©2025 Aeroseal[®] All Rights Reserved, Confidential Information.

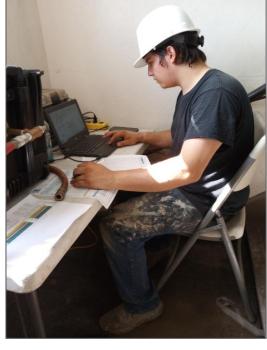
Hetzel Hall AeroBarrier Application: Sealing Station Placement

Sealing Station Spraying Sealant Fog

Engineered Building Performance


SparhawkGroup

LAVALLEE BRENSINGER ARCHITECTS


©2025 Aeroseal[®] All Rights Reserved, Confidential Information.

AeroBarrier Application at Hetzel Hall

Technician w/Laptop Running the Seal

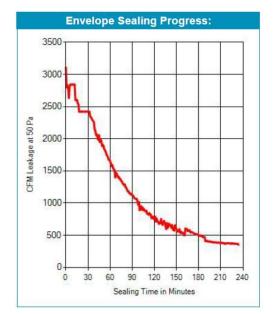
Sealing Stations Spraying Sealant Fog

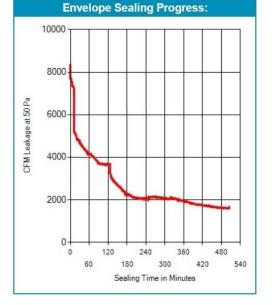
©2025 Aeroseal[®] All Rights Reserved, Confidential Information.

Scheduling Was Critical

Key Factors

- Tight construction schedule
- Sealing done in 4 mobilization phases
- AeroBarrier done on weekends when other trades not on job site (work can be done with other trades on site)
- Each floor ready for work by other trades on Monday morning





Envelope Sealing Reports By Phase

Phase 1 Seal

Phase 2 Seal

Phase 3 Seal

Sealing Time in Minutes

male New

Envelope Sealing Progress:

at 50 Pa

CFM Leakage

Envelope Sealing Progress:

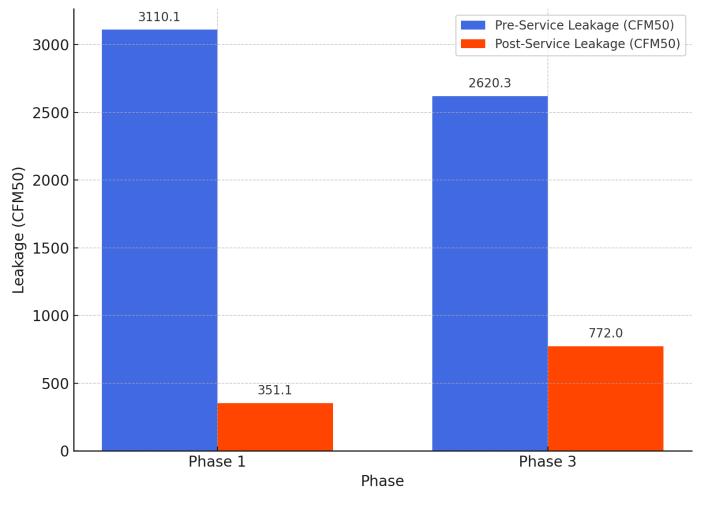
Phase 4 Seal

©2025 Aeroseal® All Rights Reserved, Confidential Information.

Sealing Results By Phase

Sealing Phase	After ACH50	Before cfm	After cfm
Phase 1: 3 rd Floor Living	0.30 ACH50	3,110 cfm	351 cfm
Phase 2: 1 st & 2 nd Floors Living, Stair D	0.62 ACH50	8,350 cfm	1,655 cfm
Phase 3: Basement Living, Stairs A & B	1.40 ACH50	2,620 cfm	772 cfm
Phase 4: 4 th Floor Living, Stairway C	1.55 ACH50	9,403 cfm	1,964 cfm
Total CFM Reduction (unguarded)		23,523 cfm	4,753 cfm

Total Air Tightness Achieved = 0.86 ACH50


©2025 Aeroseal[®] All Rights Reserved, Confidential Information.

Sealing Results: Phases 1 & 3

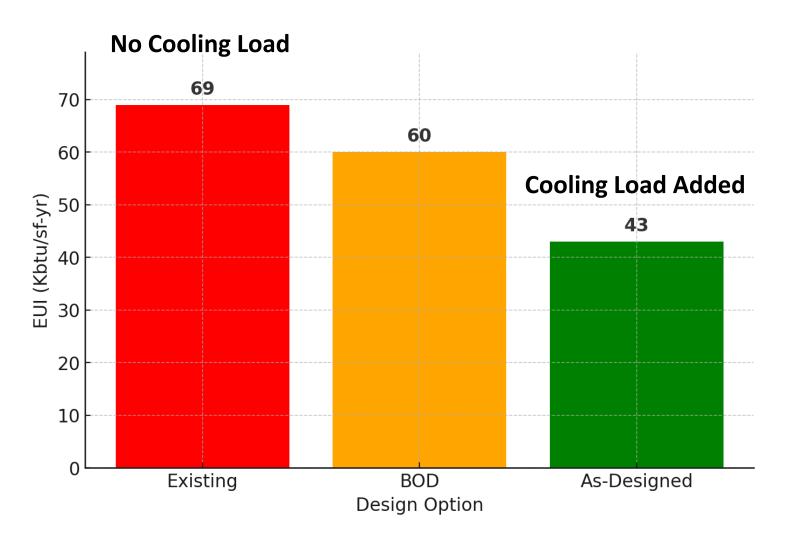

Hetzel Hall Phases 1 & 3: Ext. Envelope Air Leakage Reduction Over Time

Exterior Wall: Work After Air Sealing

Ext. Wall After AeroBarrier

Mineral Wool Added

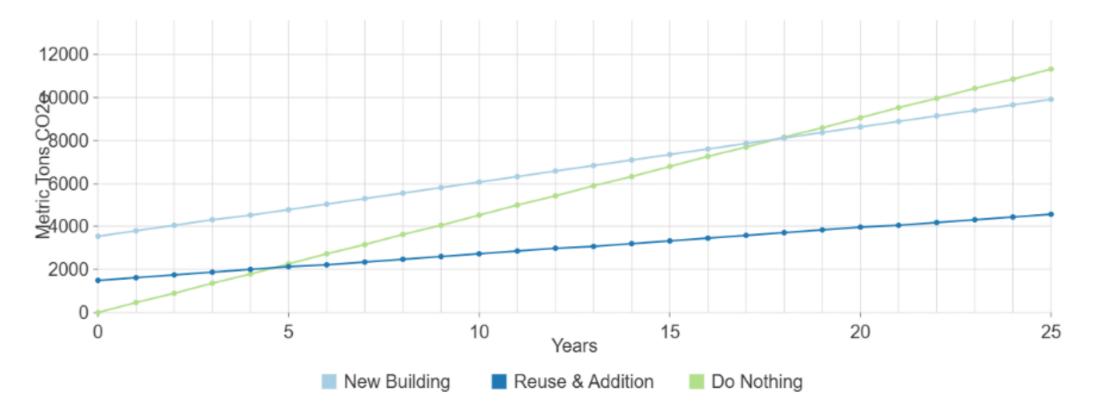
Wood Studs Installed


LAVALLEE BRENSINGER ARCHITECTS

©2025 Aeroseal[®] All Rights Reserved, Confidential Information.

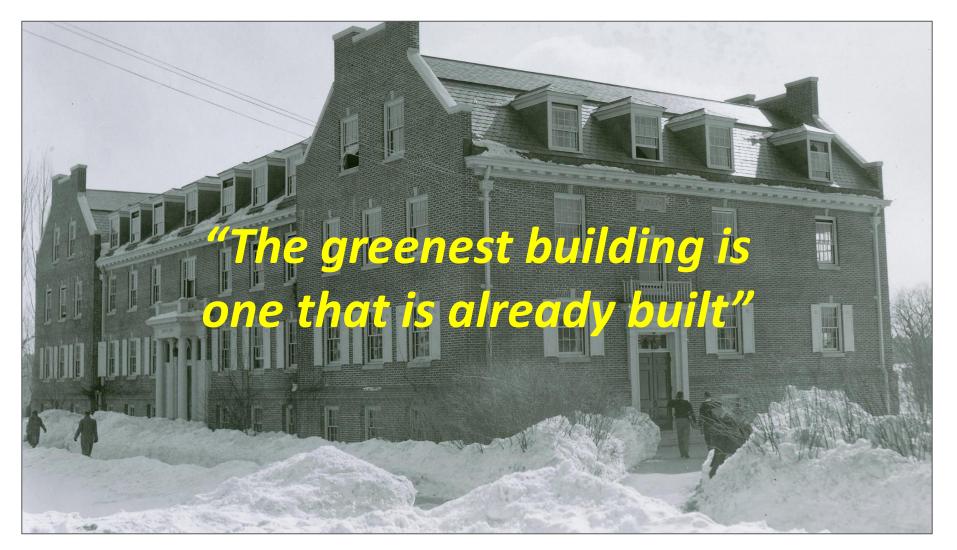
Building Energy Savings

LAVALLEE BRENSINGER ARCHITECTS


©2025 Aeroseal[®] All Rights Reserved, Confidential Information.

SparhawkGroup

Carbon Footprint Comparison


Cumulative Emissions Over Time

Hetzel Hall Deep Retrofit Worked!

LAVALLEE BRENSINGER ARCHITECTS

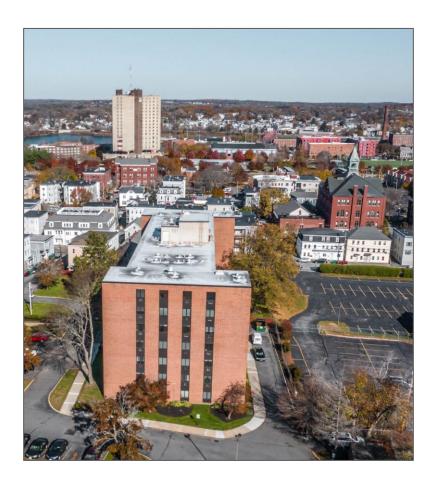
©2025 Aeroseal[®] All Rights Reserved, Confidential Information.

Lessons Learned

- Air sealing goals were accomplished with AeroBarrier
- Air sealing would have been much more challenging with other methods and materials due to project constraints including timeline
- Initial and final blower door test should be added to scope
- Communication and education with GC and relevant trades regarding air sealing is important
- Make sure to optimize sequencing and scheduling

©2025 Aeroseal[®] All Rights Reserved, Confidential Information.

©2025 Aeroseal® All Rights Reserved, Confidential Information.



Jaycee Place: Ventilation Overhaul Case Study

Jaycee Place: Project Overview

- 100,600 SF, 8 Story Apartment Building constructed in 1976
- 138 low income, affordable apartments
- Part of major modernization project
 - ✓ Apartment & Common Area Renovations
 - ✓ New Space Heating Boilers & Controls
 - ✓ New DHW Boilers
 - ✓ Elevator Modernization
 - ✓ Site Improvements
 - ✓ Central Ventilation System Upgrade & Fan Replacement

©2025 Aeroseal[®] All Rights Reserved, Confidential Information.

Jaycee Place: Project Overview

SUMMARY OF ENERGY CONSERVATION MEASURES

Energy Conservation Measu	ure Priori	ty Estimated Savings	Est. Cost ¹						
Heating	, Air Conditionin	g, Ventilation, & Hot Water		Jaycee Pl Scope of '	ace Apartments, Lowell, MA Work				
Ventilation Upgrade Investigation	High	To Be Determined	\$ 400,000	April 5, 2					
Building Heat Monitoring	High	12% Heating Fuel Use	\$ 20,000	Page 8 of	9				
Temperature Limiting Thermostats	Mediu	m 10% Heating Fuel Use	\$ 50,000				_		
Pipe Insulation									
Retro-Commission Domestic Wate	End	ergy Conservation	Measure	Priority	Estimated Savings	Est. Cost ¹			
Sleeve Air Sealing	E 110	sigy conservation	measure	1 Hority	Lotinated oavingo	231. 0031	d provide new motors/control		
Boiler Vent Air Sealing		Н	eating. Air Co	onditioning. V	/ entilation, & Hot Water		ergy Star certified, minimum		
Elevator Modernization							air reset.		
Transformer Upgrade	Ventilati	on Upgrade Investig	ation	High	To Be Determined	\$ 400,000			
Boiler Distribution Pump Control	Building	Heat Monitoring		High	12% Heating Fuel Use	\$ 20,000	icy Electronically Commutated		
Toilet Replacement	Tempera	ature Limiting Therm	ostats	Medium	10% Heating Fuel Use	\$ 50,000	control the heat in the boilers		
Aerator Replacement Showerhead Replacement	Pipe Ins	ulation		High	2% Domestic Heat Fuel Use	\$ 1,500	lling units. Thermostats in		
Submeter Irrigation Water	Retro-Co	ommission Domestio	c Water Syste	m High	To Be Determined	\$6,000	n accessible location.		
Duct Cleaning	High	N/A	\$ 120,000	•	Clean existing dryer exhaust ductwork.				
Venting Review by Engineer of Re	cord High	N/A	\$ -		Provide new roof top bathroom exhaust fans. Cl	ean video inspect/o	ocument and install mastic		
Boiler Service	High		\$ 1,500		liner to fill gaps in exhaust ductwork and install				
Meas		but Not Recommended			airflow regulator (CAR) at each bathroom.	ion onnuor grino,	no dampor, and constant		
Replace Heating Boilers Refrigerator Replacement				 Replace existing air conditioning system at elevator machine room. 					
	•	1		•	Replace existing air conditioning system at eleva	tor machine room.			
		ing and Controls		B					
Solar Photovoltaic Solar Domestic Hot Water Combined Heat and Power (CHP or Cogen)				Division 26 – Electrical					
				 All controls (load center panels, switches, thermostats, telephone jacks, etc.) throughout seven (7) handicap dwelling units shall be located no higher than 48-inches AFF. All non-counter type 					
Window Replacement									
		·				1 T AFF L.	··· ··· ···· ···· ··· ··· ··· · ··· · ··· ·		

 This is a rough estimated cost and is intended for initial analysis purposes only. Contractor bids will be required to understand actual project costs.

sparhawkgroup.com

©2025 Aeroseal[®] All Rights Reserved, Confidential Information.

How We Make them Work

Optimize Vent Air Flows:

- Standardized, Consistent Flows
- Self-Balancing to All Vents and to All Floors
- Reduces Heating & Cooling
 Loads

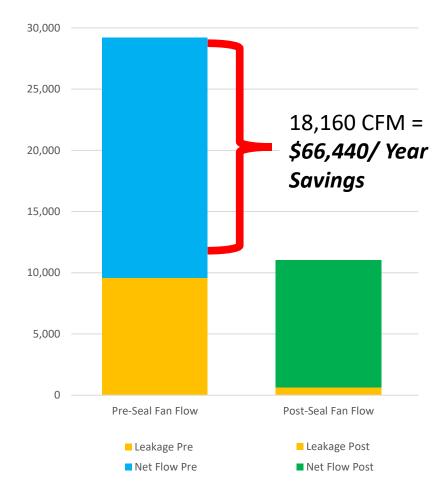
Reduce Exhaust Riser Leakage via Automated Duct Sealing

- Focuses 95% of Exhaust Flow to the Vents
- Allows Reduced Fan Flows Without Compromising Vent Performance

Optimize the Fans:

- Reduce Gross Flows 30% - 60%
- Reduce Fan Power 20% - 50%
- Reduce Kw Demand
- Improved Fan Life

LAVALLEE BRENSINGER ARCHITECTS



©2025 Aeroseal[®] All Rights Reserved, Confidential Information.

Exhaust Leakage Reduction & Optimization

- Each CFM of Exhaust Costs:
 - \$3.00 (2.1 Terms) of Natural Gas per Year
 - \$0.16 (1 kWh) of Electricity per Year
- Eliminate 6,000 CFM of Duct Leakage with Aeroseal duct sealing
- Manually Seal the Rooftop Curbs
- Manually Seal Gaps at the Vents
- Install Self-Balancing Constant Flow Regulators with Revised Design Flows

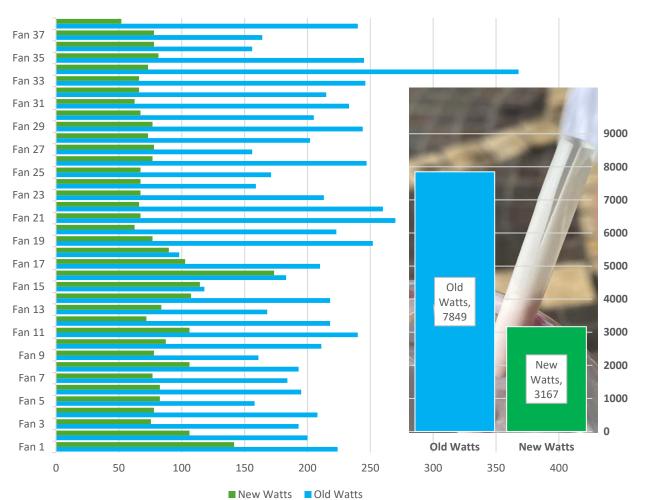
Sparhawk

Engineered Building Performance

44

Aeroseal Duct Sealing System

- Seals gaps up to 5/8"
- Goes everywhere the Air Goes
- Reliably eliminates 90%+ of all leakage
- 100% Performance Verification
- Sealant remains flexible; 40+ year life (3yr warranty)
- No lingering odors or off-gassing
- Over 300,000 homes and 10,000 commercial buildings


©2025 Aeroseal® All Rights Reserved, Confidential Information.

Replacing the Fans

Fan Replacement Wattage Reduction

- 38 New Fans Replace Aging, Poorly Performing Fans
- 60% Reduction in Fan Power
- 40,000 Annual kWh Savings
- \$9,000 Annual Electric Savings
- 4 kW Shed from Demand Load
- Each Fan Individually Tuned to Match Performance Needed

		uction Model Es		Post-Pro	oduction Data Va	alidation
	(from o	original energy m	nodel)	(Live	Data This Workb	book)
	- • • •	- ·	5.4			
	Existing	Proposed	Difference	Existing	Proposed	Difference
Total Exhaust CFM (Fan System Detail)	28,185	10,691	17,494	29,222	11,062	18,160
Electric Use (kWh)	(from Fan Syster	n Detail)			S	
Fan Energy (kWh)	99,536	27,497	72,039	(from Fan Syster		
Heating Energy Use (kWh)	0	0	,2,000	81,224	38,395	42,829
Cooling Energy Use (kWh)	27,273	10,345	16,927	0	0	0
	27,273	10,010	10,527	28,276	10,704	17,572
		[
otal Electric Use (kWh) Fan & Cooling	126,809	27 0 / 2	00 066	109 500	49 099	60 401
otal Electric Use (kWh) Fan & Cooling	126,809	37,842	88,966	109,500	49,099	60,401
otal Electric Use (kWh) Fan & Cooling	126,809	37,842	88,966	109,500	49,099	60,401
Fotal Electric Use (kWh) Fan & Cooling	126,809	37,842	88,966		· 1	60,401
	(from Fan Syster	n Detail)		(from Fan Syster	m Detail)	
			88,966 37,518		· 1	60,401 39,147
leating Fuel Use (Therm)	(from Fan Syster	n Detail)		(from Fan Syster	m Detail)	
leating Fuel Use (Therm) Heating Energy Use (Nat Gas)	(from Fan System 60,169	n Detail) 22,651		(from Fan Syster	m Detail)	
leating Fuel Use (Therm) Heating Energy Use (Nat Gas) annual Cost Savings <i>(Dollars)</i>	(from Fan System 60,169 Quantity	n Detail) 22,651 Unit/ Rate	37,518	(from Fan Syster 62,383	n Detail) 23,236	
Heating Fuel Use (Therm) Heating Energy Use (Nat Gas) Annual Cost Savings <i>(Dollars)</i> Electricity (kWh)	(from Fan System 60,169 Quantity 88,966	n Detail) 22,651 Unit/ Rate \$0.167	37,518 \$14,831	(from Fan Syster 62,383 Quantity	n Detail) 23,236 Unit/ Rate	39,147 \$10,069
leating Fuel Use (Therm) Heating Energy Use (Nat Gas) Annual Cost Savings <i>(Dollars)</i>	(from Fan System 60,169 Quantity 88,966 37,518	n Detail) 22,651 Unit/ Rate \$0.167 \$1.440	37,518 \$14,831 \$54,026	(from Fan Syster 62,383 Quantity 60,401 39,147	n Detail) 23,236 Unit/ Rate \$0.167	39,147 \$10,069 \$56,371
leating Fuel Use (Therm) Heating Energy Use (Nat Gas) annual Cost Savings <i>(Dollars)</i> Electricity (kWh) Nat Gas (Therm)	(from Fan System 60,169 Quantity 88,966 37,518	n Detail) 22,651 Unit/ Rate \$0.167	37,518 \$14,831	(from Fan Syster 62,383 Quantity 60,401 39,147	n Detail) 23,236 Unit/ Rate \$0.167 \$1.440	39,147 \$10,069
Heating Fuel Use (Therm) Heating Energy Use (Nat Gas) Annual Cost Savings <i>(Dollars)</i> Electricity (kWh) Nat Gas (Therm) Annual GHG Reductions <i>(tCO2e)</i>	(from Fan System 60,169 Quantity 88,966 37,518 Total Ar	n Detail) 22,651 Unit/ Rate \$0.167 \$1.440 nnual Savings:	37,518 \$14,831 \$54,026 \$68,857	(from Fan Syster 62,383 Quantity 60,401 39,147 Total A	n Detail) 23,236 Unit/ Rate \$0.167 \$1.440	39,147 \$10,069 \$56,371
Annual Cost Savings <i>(Dollars)</i> Electricity (kWh)	(from Fan System 60,169 Quantity 88,966 37,518	n Detail) 22,651 Unit/ Rate \$0.167 \$1.440	37,518 \$14,831 \$54,026	(from Fan Syster 62,383 Quantity 60,401 39,147	n Detail) 23,236 Unit/ Rate \$0.167 \$1.440 nnual Savings:	39,147 \$10,069 \$56,371 \$66,440

SparhawkGroup 47

Var % 3.81%

> -40.55% 0.00% 3.81%

-32.11%

4.34%

-32.11% 4.34% -**3.51%**

-32.11% 4.34% -**4.44%**

©2025 Aeroseal® All Rights Reserved, Confidential Information.

Incentives Used

MA LEAN Program paid for the fans

- Complete Project: \$360,000
- Fan Incentive: (\$100,000)
- Net Project Cost: \$260,000
- Savings per Year: \$66,000
- Simple ROI: Less than 4 Years
- Measure Life: 20 Years

FEDERAL, STATE, AND UTILITY COMPANY INCENTIVE PROGRAMS

Program Name	Incentive Details	Incentive Amount
Mass Save – Energy Efficiency Programs	 Rebates or incentives including: Programmable Thermostats Air Sealing & Weatherization Pipe Insulation Heating System Controls Motor or Drive Controls Faucet Aerators 	Varies on scope. Some measures are direct installation by the program and are paid up to 70% by the Sponsors of Mass Save.
Mass Save – Technical Assistance and Engineering Services	Assistance in selection, engineering, and installation of: • Building Envelope / Weatherization Improvements • Energy Management Systems • HVAC Systems • Variable Frequency Drives Also provided are targeted Commissioning and Retro- Commissioning services.	Pre-qualified independent engineers and consultants help businesses become more energy efficient. Financial assistance of up to 50% of the cost provided by the Sponsors of Mass Save.
LEAN Low-Income Multi-Family Program	 Possible measures: Air sealing Programmable Thermostats DHW measures: Pipe Insulation Low-Flow Showerheads Faucet Aerators System Replacement Refrigerators Duct Sealing 	A program administrator will detail energy efficiency measures and will assess benefit cost ratios. Cost-effective measures are at no cost to the owner.

Lessons Learned

- Securing Incentives Add Time & Complexity
 - Late adoption of incentives resulted in dropping AC sleeve air sealing measures, which would have been a good complimentary improvement.
 - Long timeline meant ventilation work scope wasn't integrated into the rest of the project.
- Commissioning Is King!
 - Project concluded in June, but we returned in October for final commissioning under "winter conditions"
 - "Real World" fan performance had us revise our energy model

Q&A/Discussion

Q&A/Discussion

Thank you!

Bill Shadid

Aeroseal Strategic Marketing Leader bill.shadid@aeroseal.com

Sean Landry

Lavallee Brensinger Architects Higher Ed Studio Leader sean.landry@lbpa.com

Tom Holmes

Aeroseal Bus. Develop. Mgr. Northeast thomas.holmes@aeroseal.com

Matt Holden

Sparhawk Group President mholden@sparhawkgroup.com