

AIA Provider: Northeast Sustainable Energy Association Provider Number: G338

Making Money By Saving Energy

Jon Hettinger October 15, 2015 Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request. This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Rockefeller Center

Tuning The Rock ... A Path Towards Improved Energy Efficiency

TISHMAN SPEYER

Course Description

Provide an overview of the energy-savings investments completed at Rockefeller Center.

Discuss the approach and findings resulting from the recently completed Energy Audit and Retro-Commissioning program

Discuss programs and initiatives moving forward.

Learning Objectives

At the end of the this course, participants will be able to:

- 1. Consider energy conservation measures for their facilities
- 2. Understand requirements of Local Law 87 and how it benefits them
- 3. Look for No or Low Cost Energy Savings Opportunities
- 4. Discuss the steps for ECM implementation

Overview of Rockefeller Center

Overview of Rockefeller Center

Rock Center's Foundation

- Twenty (20) electrical accounts, including TOD for Central CHW plant.
- Ten (10) Steam accounts.
- Energy use meters and dashboard, providing daily trends, out-of-range advisories and alarms

ECMs – Central Refrigeration Plant

- Dual compressor chiller for improved off-peak efficiency
 - Re-piped evaporators on two 4,000T chillers from two-pass to singlepass flow (capacity recovery at off-peak conditions)

Central Plant Refrigeration Machine Statistics

Туре	Quantity	Tons
Electric Centrifugal	3	2,500 - 4,000
Steam Turbine Centr	1	4,000
Ice Plant	1	1,300

ECMs – Central Refrigeration Plant

- Two 1,250 ton Plate Heat Exchangers "Free Cooling" during colder weather
- VFDs on Cooling Tower fans (also for improved temperature control)
- VFDs on CHW pumps vary based on load

Central Plant Cooling Towers							
Building	Quantity (Cells)						
1/9	10						
11	7						

Energy Cost Savings Measure – Ice Storage Plant

- 41 tanks yielding 8,200 ton-hours of storage
- Ice produced at nights and "burned" during on-peak to lower our daytime peak electrical demand by approx. 1,000 kW
- TOD electric rates yield further savings

ECM – Fountain Heating

Heat contained within collected Con Ed Steam condensate used as heat source instead of steam directly

ECM – Garage HVAC

- Heat contained within collected Con Ed Steam condensate used as heat source for warming garage ventilation air
- Fan speed control based on measured CO concentration during offpeak periods

ECM - Window Replacement

- 15,550 single-pane windows from the 1930's
- Phased replacement, performed as leases roll or in close coordination with current tenants

ECM - Window Replacement

- New Double-pane thermally insulated windows
- Mock-ups to determine glass type and finish to match existing appearance
- Estimated \$350 annual energy savings per window

ECM – Convector Replacement

ECM – Solar Panels at 45 Rock

- 363 GE panels
- 60 kW of peak power

Central Plant Control Center

Central Plant Overview Screen

Ice Plant Operations

Building by Building Temperature and CHW Usage

R R	C Global Page)	CENTRAL	PLANT CH	IW DISTI	RIBUTION			CP Meni	L
E BU		PF	RIMARY CHIL	LED WATER		SECONDARY CHILLED	VINJECTION WATER				
E BU		снж	TEMPER	RATURE	CHW	TEMPER	ATURE	Gals/	TON		UMPTION
WP BUILDII	٩G	FLOW	SUPPLY	RETURN	FLOW	SUPPLY	RETURN	Ton	RATE	DAILY TONS	MONTHL TONS
BUILDING 8		531	41.2	58.9	583	43.5	58.9	1.6	372	3270	2920
N BUILDING 14		905	40.6	55.9	979	41.6	55.9	1.7	624	4337	2112
TE BUILDING 11		493	40.8	58.5	478	43.0	58.5	1.5	315	2110	1511
G BUILDING 5		714	41.1	54.8	900	42.1	54.8	1.9	474	2771	1882
PIF BUILDING 17		552	40.4	55.4	589	44.6	55.4	2.2	283	1586	321
BUILDING 2					118	45.7	59.8	1.7	72	301	94
OI BUILDING 3		416	41.2	56	295	44.6	58.1	1.8	166	933	647
KENNETH KO	LE STORE	33 A	44.6	53.1	25	46.1	55.6	2.8	12	90	138
BUILDING6		1	1	1	0	54.5	51.0	0.0	ol	2056	7216
BUILDING7		4	48.1	49.5	0	42.5	55.7	0.0	0	601	1865
BUILDING 10			Ì		814	43.9	58.8	1.7	527	3580	4266
BUILDING 18		1226	41.6	50.9	413	43.9	61.6	1.3	286	1712	2643
BUILDING TO					413	40.0	01.0	1.5	200	1112	2043
DCT.	A-RISER	2170	40.7	51.5	11-CT OUTS	SIDE AIR C	ONDITIONS	2.2	974	9831	11923
BUILDING 1	B-RISER	1038	40.4	51.0	72.79 0	71 %	30.9 ENT	2.2	473	3497	2283
	C-RISER	1363	40.8	52.8			ANDITIONS	2.1	666	3918	2385
	STORE	1078	40.9	52.5	AVG OUTS		1	2.0	521	6611	8392
BUILDING 9	Conc Retail	369	40.8	50.8	74.80 0	63 %	30.8 ENT	2.3	154	1956	4356
CHLR PLANT	974 Fwrd	11991	41.3	52.1					15:30	4 / 1	1 / 2011
<											
	1	- + 045(A.J.	-) FUOCT 4			L uppl cu			COOLING TO		:12 PM 4/

ECM – System Advisories

Central AHU Summary Screen

		-			trix.gpg													_	
System	Conn	ect D	isconnect	Edit	View Ac	cess Tr	ends Su	immary	Tools W	indow Helj	>								- 8
0 Fifth	Ave	nue																	
Air			Static Pr	essure	Supply	/ VFD	Returr	VED	Return	Mixe	d Air	Preheat	Reheat	Su	oply	Val	Ves	Dan	npers
Handl		S/S	Setpoint				Control		Temp	Setpoint		Setpoint		Setpoint					01000000000
ACS-4		Strt	3.0	3.0	74	74	64	62	73.6	55.0	55.2	68.9	68.5	57.5	55.2	61	0	84	89
ACS-4		Strt	2.0	2.0	80	82	68	73	74.2	54.2	54.8	68.1	68.0	56.9	56.3	55	0	100	90
ACS-3	7S	Strt	2.7	2.7	69	72	59	64	71.9	58.3	59.4	70.0	69.1	59.2	58.4	60	0	72	75
ACS-3	6N	Strt	1.2	1.3	73	70	62	58	73.0	57.1	56.7		58.9	62.1	56.3		0	74	80
ACS-3	SVV	Strt	2.0	2.0	64	59	55	50	73.0	57.1	57.0		56.4	62.1	57.3		0	76	78
ACS-3	4S	Strt	1.2	1.2	77	79	66	67	71.9	59.0	58.8		62.3	62.0	58.7		0	48	48
ACS-3	3N	Strt	1.2	0.0	64	63	54	51	70.0 T	63.9	63.8		64.9	66.9	62.8		0	47	36
ACS-3		Strt	1.5	1.5	62	56	53	46	74.1	53.4	57.3	58.0	59.1	59.9	57.3	0	0	100	78
ACS-3		Strt	1.2	1.3	64	68	55	60	72.0 T	62.2	62.3	68.5	77.1	66.9	62.4	0	0	42	50
ACS-3		Strt	1.2	1.3	72	70	61	57	71.5 T	63.2	63.1	69.5	69.0	68.5	62.0	9	0	49	44
ACS-2		Strt	1.5 1.3	1.5	59	54 50	50	45	74.7	54.4 62.3	55.1 62.3	72.0	60.3 71.2	57.7	54.1	49	0	100	88
ACS-2		Strt	1.3	1.3	63	63	54 54	47	71.0 T 73.1	57.0	62.3 56.7	67.5	68.2	61.7	61.8 56.4	48	0	73 51	79 80
		Strt	1.5	1.5	66	60	54	53	73.1 71.0 T	64.2	56.7 63.4	73.4	73.2	70.2	56.4 64.2	4	0	25	41
ACS-2-		Strt	1.2	1.3	74	74	63	61	71.0 T	63.9	64.2	69.8	73.2	67.5	64.6	49	0	32	37
ACS-2	111 A.	Strt	1.5	1.5	64	59	55	50	71.8	57.3	57.4	68.4	68.6	61.5	58.5	15	0	64	75
ACS-2		Strt	1.5	1.5	55	60	47	52	73.3	59.2	58.4	67.4	67.2	61.8	56.2	41	0	56	62
ACS-2		Strt	1.0	1.0	STRT	ON	STRT	ON	71.0	60.6	61.0	70.3	68.6	66.3	61.4	44	0	56	54
ACS-2	Sec. a	Strt	8		STRT	ON	STRT	ON	70.0 T	62.2	61.5	71.3	70.9	65.4	60.4	42	0	49	49
ACS-1		Strt	1.2	1.2	69	68	58	57	71.5	59.7	59.4	55.0	59.6	65.0	59.9	0 M	0	29	64
ACS-1	7N	Strt	2.5	2.5	78	78	66	67	74.3	54.4	59.2	67.0	67.7	59.1	59.3	26	0	100	70
ACS-1	7S	Strt	1.2	1.2	70	65	59	55	71.0 T	60.5	60.8	69.7	67.6	66.9	61.1	41	0	45	55
ACS-1	6N	Strt	1.5	1.5	62	67	53	59	72.0	58.8	56.6	65.0	63.4	64.8	57.9	0 M	0	93	79
ACS-1:	SN	Strt	1.2	1.2	70	66	59	54	70.0 T	66.5	66.3	70.4	71.2	67.9	66.9	10	0	1	21
ACS-1:	222	Strt	1.3	1.3	58	64	49	57	71.0 T	64.2	63.9	72.6	73.9	65.9	64.4	_ 11 _	0	55	38
ACS-1		Strt	20 D D		STRT	ON	STRT	ON	71.0 T	64.5	64.1	52.5	63.6	66.5	57.9	0	0	50	54
ACS-1	222232	Strt	3.0	3.0	70	69	59	58	71.7	56.4	56.5		59.6	64.6	55.9		0	100	79
ACS-1	C.C. 10	Strt	2.0	1.9	63	63	54	54	73.4	54.7	55.2	00	59.1	61.1	55.5	14	0	88	88
ACS-1	22/A) (21)	Strt	0.2	0.3	86	92 66	78	76 50	73.0 T	63.5	63.4 59.7	62	61.0	64.5	61.7	14	0	78	62
ACS-0 ACS-0		Strt Strt	2.0	2.0	71 66	68	61 56	50 60	73.1	58.3 55.9	59.7	70.4	69.0	61.2 59.0	58.6 55.6	27	0	47 100	65 82
ACS-0	12 10 1 10 10 10 10 10 10 10 10 10 10 10 1	Strt	1.5	1.5	62	63	55	53	72.5	55.9	55.3 63.6	70.4	69.0	59.0 66.1	55.6 63.0	21	0	100	62
ACS-0		Strt	1.5	1.5	83	80	70	65	72.5	61.7	61.5	60.0	64.6	68.9	61.2	0	0	44	54
ACS-0		Strt	1.2	0.4	67	63	63	58	75.8	52.0	58.4	00.0	60.6	58.7	57.8	-	21	100	100
ACS-0	20121	Strt	1.5	0.3	59	53	50	45	74.4	54.8	56.7		57.5	57.0	54.5		0	100	81
ACS-0	244421	Strt	1.2	0.0	61	61	52	51	74.4	54.8	55.4		59.4	56.6	54.7		0	100	100
ACS-0	2// 201	Strt	1.0	1.0	45	38	38	30	73.6	56.3	56.3	70.0	69.9	61.2	55.3	2	0	85	82
ACS-S		TOP M			Stop	Off	Stop	Off	83.5	60.1	80.2	2	79.6	50.0	82.4	0	0 M	0	10
ACS-S	88	Strt	8		STRT	ON	8 X	•		0.0	53.5	54.8	56.2	62.0	62.0	0	0	1	
ACS-S	87	Strt	ň.		STRT	ON	STRT	ON	76.8	68.0	67.7	58.2	66.0	78.9	75.5	0	0	41	39
ACS-S	10000-0	Strt	Ĩ.		STRT	ON	STRT	ON	71.4	59.6	59.6	52.5	58.5	61.9	61.6	0	0	69	63
ACS-S	CONTRACTOR OF	Strt	Ű.		STRT	ON	STRT	ON	71.5	65.1	64.8	57.4	64.9	70.1	69.6	0	0	33	35
ACS-S	1000	Strt	Ĩ.		STRT	ON	STRT	ON	73.0	59.6	59.6	54.4	61.2	60.5	60.9	0	0	29	66
ACS-S	B3	Strt	î		STRT	ON	STRT	ON	72.7	60.7	60.5	54.9	60.3	62.4	64.4	0	0	19	20
																		1	

Campus-Wide Air Handling Unit Statistics

Building	Quantity	Max CFM
1/9	71	66,000
2	8	31,000
3	8	31,000
5	30	45,000
6	71	48,292
7	28	41,000
8/14	32	79,300
10	17	41,400
11	23	75,400
17	23	29,235

Early Compliance with NYC LL87

- AKF performed the following to achieve a comprehensive understanding of the buildings' system operations:
 - Document review & facility discussions
 - Utility Analysis and Temporary Metering
 - Energy Model
 Development &
 Calibration
 - Retro-Commissioning Functional Testing & TAB Measurements

Energy Audit – Utility Analysis

Building No.

Energy Consumption vs. Energy Use Intensity

Understanding the Energy Use

We identified a number of "parasitic loads" on the electrical and steam systems. The following summarizes major parasitic loads identified during the project:

Building No.	Load Type	Load Details	Annual Estimated Load
3	Electric	Serves the following miscellaneous loads at Rockefeller Center: • Fountain pumps, • Loading dock and concourse lighting, • Tenants • Loading dock Equipment	2,130,000 kWh
2	Steam	Plaza Restaurants	6,402 Mlbs
7	Electric	Serves 50 Rock Cooling Towers that provide condenser water to 50 Rock, 45 Rock and the central Ice Plant	440,000 kWh
11	Electric	Serves 10 Rock Cooling Towers that provide condenser water to the Central Plant	300,000 kWh

Notes:

1) Building No. 2 &3's loads were estimated from equipment information, operational hours, and utility bill review.

2) Building No. 7&11's loads were temporarily sub-metered to establish loads.

"Corrected" EUI Results

 Using the results from the temporary metering analysis, the following figure identifies an EUI reduction for Buildings 2, 3, 7, & 11:

Find the No or Low Cost Opportunities

 AKF performed walk-throughs with facility engineers of all mechanical equipment rooms to determine NLC improvements for the base building equipment. The following typical measures were found:

Measure No.	AHU Measure Description
NLC-01	Repair/seal air leaks at an access doors
NLC-02	Repair/seal air leaks throughout ductwork
NLC-03	Repair/replace ductwork insulation
NLC-04	Repair/replace thermal insulation on piping
NLC-05	Repair leaky/faulty valves and/or fittings
NLC-06	Repair/clean damaged/dirty coils
NLC-07	Replace dirty filters
NLC-08	Repair loose fan pulleys and/or belts
NLC-09	Repair noisy fan motors
NLC-10	Repair/replace thermal insulation on an unit casing

<u>Note</u>: Measures in **blue** contributed most to energy savings.

Retro-Commissioning Findings

 The following table represents the typical operational improvements identified during functional testing:

Measure No.	Description
RCx-01	Repair/replace a pump's thermal insulation on piping
RCx-02	Repair unit damper(s) for proper normal operation (excess OA)
RCx-03	Repair unit damper(s) for proper economizer operation (lack of OA)
RCx-04	Repair unit damper(s) for proper economizer operation (increased SP)
RCx-05	Repair chilled water valve leaking into coil during non-cooling hours (overcooling)
RCx-06	Repair steam valve to prevent overheating
RCx-07	Repair unit spill air damper(s) for proper economizer operation (increased RF SP)
RCx-08	Recalibrate over-reporting sensor to prevent overheating
RCx-09	Recalibrate under-reporting sensor to prevent overcooling
RCx-10	Repair open RA damper to prevent excessive use of chilled water during economizer mode
RCx-11	Remove blockage from the airway's path to reduce SP
RCx-12	Re-attach SP sensor to fan to allow for variable volume control
RCx-13	Repair an AHU's or fan's loose fan pulleys and/or belts

<u>Note</u>: Measures in **blue** contributed most to energy savings.

Energy Modeling – Predicting ECM Performance

- Developed (6) energy models to identify typical major end-use (lighting, plug loads, fans, pumps. etc) breakdown for Rockefeller Center buildings.
- Calibrated models to be within 5% of annual utility energy consumption and 10% for monthly utility energy consumption.

Modeling Results – End Use Breakdown

 The following represents a typical building's major end-use profiles for Rockefeller Center based on the modeled buildings.

Energy Efficiency Measures Development List of Central Plant - Recommended ECMs

FIRST PRIORITY ECM RECOMMENDATIONS					
ECM Description					
Retrofit Existing 4,000 Ton Electric Chiller (RM-B) with New Complete	~ 5				
Driveline Including Motor, Compressor, Control Panel, and VFD	~ 0				
Retrofit Existing 2,500 Ton Electric Chiller (RM-D) with New Complete	~ 3				
Driveline Including Motor, Compressor, Control Panel, and VFD	~ 3				
Rebalance Central Plant Chilled Water and Condenser Water Systems	~ 1				
Reset Condenser Water Temperature	~ 1				
All First Priority ECMs Combined	~ 3				

SECOND PRIORITY ECM RECOMMENDATIONS	
PLC Controller on Steam Chiller (RM-A)	~ 4
Trim CW Pump Impellers	~ 4
New 2,500 Ton Chiller	~ 4.5
All Second Priority ECMs Combined	~ 4

Energy Efficiency Measures Development List of Building - Recommended ECMs

FIRST PRIORITY ECM RECOMMENDATIONS	
ECM Description	Simple
Building Chilled Water System Balancing	< 1
Install floor isolation dampers at supply air duct mains for all multifloor	~ 3
AHUs for 610 and 620 5th Ave.	~ 3
Exterior Lighting – Semi-Replacements	~ 1.5
All First Priority ECMs Combined	~ 1.5

SECOND PRIORITY ECM RECOMMENDATIONS	
Replace 30 Rock Secondary Chilled Water Heat Exchangers	~ 9
Interior Lighting - Full Replacements	~ 5.5
Recalibrate minimum OA requirements at AHUs and H&V units.	~ 4.5
All Second Priority ECMs Combined	~ 5

Energy Efficiency Measures Development List of Tenant - Recommended ECMs

TENANT RENOVATION ECM RECOMMENDATIONS	
ECM Description	Simple
	Payback
Convert existing dual duct constant volume air handling systems to	~ 3.5
variable air volume systems.	
Retrofit existing constant volume air handling systems to variable air	~ 15.5
volume systems.	
Convert economizer operation from dry bulb to enthalpy-based control.	~ 7.5
Tie Perimeter Heating Controls to Space Thermostats	~ 22
Retrofit existing windows with a new standard performance window	
("ClearGlass"). [Low]	~ 14.5
All Tenant Renovation ECMs Combined	~ 19

Energy Efficiency Measures Development All-in Energy Reduction Findings

 The following figure presents the associated EUI reduction per building if all ECMs and operational improvements were implemented:

Moving Forward - Why Stop Here?

- Implementing Study's Findings
 - Central Plant Improvements
 - LED Exterior Façade Lights
- Investigating Additional Technologies
 - Cogeneration
 - Electric Storage
- Installing Permanent Sub-metering
 - Benchmarking
 - Regular monitoring of utility usage
 - Assess opportunities for Control Sequence Improvements
- Global Initiative "Tishman Speyer University"
 - Training
 - Best Practices
 - Innovation Task Group

Keys to Success

- Business partners (Con Edison, NYSERDA, consultants and vendors)
- Use proven technology (reliability and competitive pricing)
- Implement systems or strategies that complement primary business focus
- Put information to use!
- Commissioning / retro-commissioning and energy audits

This concludes The American Institute of Architects Continuing Education Systems Course

