

AIA Provider: Northeast Sustainable Energy Association

Provider Number: G338

Balancing Historic Preservation and Energy Performance

Benjamin Haavik & Colleen Chapin

March 3, 2015



Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request. This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.



#### **Course Description**

Historic New England's approach to weatherization emphasizes preservation over intervention. But as shown by the energy retrofit that achieved an over 60% reduction in energy usage at the Lyman House, a National Historic Landmark, energy performance and preservation can co-exist. This session will discuss HNE's preservation philosophy and how it guides the organization's energy conservation projects. We will share an energy usage analysis of all 36 HNE properties and discuss how that information is used to prioritize actions.

- Introduction to Historic New England
- Our Approach to Energy Efficiency
- Analysis of All Energy Usage
- Case Study: Lyman Estate Weatherization Project



## Learning Objectives

At the end of the this course, participants will be able to:

- 1. Be able to reference multiple case studies for energy use reduction strategies in historic buildings;
- 2. Be able to identify appropriate, non-destructive energy retrofits for historic properties and understand how to balance stewardship of heritage buildings with effective energy retrofits;
- 3. Have a prioritized list of actions for reducing energy use in historic buildings;
- 4. Have a working knowledge of Historic New England's preservation philosophy.



## Historic New England

We serve the public by preserving and presenting New England heritage



*Collection s* 



Archives and Publications



Educational Programs



Preservation Services



*Historic Properties* 































Defining the past. Shaping the future.

#### Historic Properties

























C THE R .







#### Program Areas: Historic Properties





#### We promise

You'll experience, in a real and personal way, the lives and stories of the individuals who made New England what it is today.



#### Program Areas: *Historic Properties*

#### We offer

- -House and landscape tours
- -Adult and family programs
- -School programs
- -Special events
- -Function rentals







#### Program Areas: Historic Properties

36 Properties

140 structures

48 distinct metered entities

#### Building Uses

-Museum

-Museum and Administrative

-Administrative and/or Programming

-Greenhouse

-Support

-Tenant



#### What is Property Care?

Responsible for the Preservation and Maintenance of the 36 historic buildings and landscapes







# William Sumner Appleton and SPNEAPreservation Philosophy

- Documentation
- Respect for change over time
- Repair materials in-kind rather than replace
- Reversibility





## Historic New England's General Approach to Energy Efficiency



# Approach to Energy Efficiency

- Baseline Measurements & Metrics
- Air Leakage
- Insulation
- HVAC and Utility Improvements
- Behaviors and Traditional Techniques



#### **Baseline Measurements and Metrics**



Figure 10: Gas use, 2009-2010, with heating degree days 65° F



Figure 11: Electrical use, 2007-2010, with cooling degree days 65° F





# Air Leakage: Air Sealing



Holes in Foundation





# Air Leakage: Air Sealing







## Air Leakage: Window Conservation

• Repair versus Replacement







#### Air Leakage: Storm Windows



Exterior-Wooden



Exterior-Aluminum



Interior



# Insulation



## Insulation



HVAC and Utilities









## **Behaviors and Traditional Techniques**







Energy Use Analysis 36 Properties



#### Energy Usage Analysis

• 2011 and 2012 utility data

- oil, natural gas, electricity

- Converted all utilities to common factor
  - Gallons of Oil
  - Therms of Natural Gas British Thermal Units
  - Kilowatt Hours of Electricity (BTUs)
- Merged utility data per unique location
  - 48 Distinct Metered Entities



To

#### Energy Usage Analysis

- Six calculations for each site:
  - Average BTU use per winter and summer
  - Average BTU use per HDD and CDD
  - Average BTU use per HDD and CDD per sf
- Seven rankings for each property
  Six above PLUS a Compiled Total Ranking
- Analyzed performance by type



# Energy Usage Analysis Total BTU Usage





#### Average Winter BTUs

Excluding Haverhill

| Otis             | 1,027,684,240 |
|------------------|---------------|
| Lyman Greenhouse | 702,209,794   |
| Phillips         | 320,432,664   |
| Barrett          | 296,639,820   |
| Lyman Main House | 289,105,739   |
| Jewett House     | 268,892,146   |

1 gallon oil = 140,000 BTUs 1 therm natural gas = 100,000 BTUs 1 kWh of electricity = 3412 BTUs

*Typical residence = 72,000,000* BTUs



#### Average Winter BTUs Excluding Haverhill

#### Average Summer BTUs Excluding Haverhill





#### Average BTU per HDD Excluding Haverhill

#### Average BTU per CDD Excluding Haverhill

Winter Average BTU/HDD



Summer Average BTU/CDD





#### Average BTU per HDD per SF Excluding Haverhill

#### Average BTU per CDD per SF Excluding Haverhill

BTU per HDD per SF







# Average BTU per CDD per SF



# Be Careful of Data Trickery!



## Energy Usage Analysis

#### **Compiled Total Ranking**

| Property                                         |    |
|--------------------------------------------------|----|
| Otis                                             | 1  |
| Lyman: Greenhouse                                | 2  |
| Phillips                                         | 3  |
| Haverhill                                        | 4  |
| Lyman: Main House                                | 5  |
| Jewett House                                     | e  |
| Casey Farm - Greenhouse & outbuildings           | 7  |
| Cogswell's Grant                                 | 8  |
| Barrett                                          | g  |
| Marrett                                          | 10 |
| Castle Tucker                                    | 11 |
| Lyman: CHSE                                      | 12 |
| SPL: Visitor's Center                            | 13 |
| Gropius                                          | 14 |
| Codman - CB                                      | 15 |
| Rundlet-May                                      | 16 |
| Langdon                                          | 17 |
| Roseland Cottage                                 | 18 |
| Beauport                                         | 19 |
| Codman - Main                                    | 20 |
| Merwin                                           | 21 |
| Hamilton - museum, garden cottage, carriage barn | 22 |
| Arnold - museum                                  | 23 |
| Casey Farm - office                              | 24 |
| Browne                                           | 25 |
| Win-Thacher                                      | 26 |
| Pierce                                           | 27 |
| Sayward-Wheeler                                  | 28 |
| Jewett-Eastman                                   | 29 |

## Historic Properties

36 Properties

140 structures

47 distinct metered entities

#### Building Uses

-Museum

-Museum and Administrative

-Administrative and/or Programming

-Greenhouse

-Support

-Tenant



## By Type: Museums and Admin



## Museums and Admin

- Pierce House
  - Interior shutters
  - Foundation pointing
  - Carpentry Repairs
  - Weatherstripping
  - Pillow Stuffing



17% reduction in energy



## By Type: Museums and Admin


# Museums and Admin

- Phillips House
  - Deeper analysis of energy usage
  - Review museum conditions and environmental needs
  - *Air infiltration testing and simple air sealing*
  - Duct sealing and insulation
  - Better thermostat/zoning controls
  - Additional insulation in attic



# By Type: Museum Environmental Systems



#### Museum Environmental Systems

- Barrett House
  - Deeper analysis of energy usage
  - Review museum conditions and environmental needs
  - What is actually going on?



### Case Study



#### Lyman Estate Weatherization – 2011/2012



### Project Background

- Massachusetts Department of Energy Resources
  - Architectural Heritage Foundation
  - Trustees of the Reservations
  - Historic New England: \$311,000
- Goal: Reduce Energy Consumption by 50%!



# Preservation Philosophy

- <u>Research</u> and document the history, evolution, features, materials, integrity and areas of significance of resources prior to undertaking any repair or conservation work.
- <u>Monitor</u> usage to prevent irreparable loss of historic fabric;
- Choose maintenance and conservation treatments that reflect a commitment to retaining and preserving historic material;
- <u>Recognize and preserve the design and craftsmanship</u> that has uniquely shaped a resource over time;
- <u>**Disseminate the experiences</u>** and information associated with resources to internal and external audiences; and</u>
- Follow or exceed nationally-accepted professional standards and guidelines, as appropriate for each discipline, in order to ensure the longevity of resources and maintain a reputation for innovation and the highest quality of work.



# Preservation Philosophy

- <u>**Research**</u> and document the history, evolution, features, materials, integrity and areas of significance of resources prior to undertaking any repair or conservation work.
- <u>Monitor</u> usage to prevent irreparable loss of historic fabric;
- Choose maintenance and conservation treatments that reflect a commitment to <u>retaining and</u> <u>preserving historic material</u>;
- <u>Recognize and preserve the design and</u> <u>craftsmanship</u> that has uniquely shaped a resource over time;
- **<u>Disseminate the experiences</u>** and information associated with resources to internal and external audiences; and
- Follow or exceed nationally-accepted professional standards and guidelines, as appropriate for each discipline, in order to ensure the longevity of resources and maintain a reputation for innovation and the highest quality of work.



# Approach to Energy Efficiency Efforts

- Don't damage historic fabric
  - Energy Efficiency measures should be reversible

- Think about the interpretation
  - Trade-offs between efficiency and authenticity



# The Lyman Estate, 1793 *Waltham, MA*



Before 1880









# Approach to Energy Efficiency

- Baseline Measurements & Metrics
- Air Leakage
- Insulation
- HVAC and Utility Improvements
- Behaviors and Traditional Techniques



### Performance Testing











### Baseline Metrics (2009/2010)

- 0il
  - $\stackrel{\sim}{}$  3,100 gallons No. 2 Fuel Oil per year
  - 429 MMBTU
- Electricity
  - $^{\sim}$  65,000 kWH per year
  - **-** 221 MMBTU



# Window Conservation

- ~ 120 Window Openings
  - Includes  $3^{\rm rd}$  floor and basement
  - Glazing, paint, structural

repairs, weather









### Window Conservation









# Interior Storm Windows

- $\sim$  70 Window Openings
  - Includes basement
  - No exterior visibility
  - Low E glass







### Exterior Storm Windows

#### Wood storms with screens







### Exterior Storm Windows

#### Aluminum storms with custom color matched to trim







### Storm Window Installation



HISTORIC<sup>®</sup> NEW ENGLAND Defining the past. Shaping the future.

#### Window Treatment Metrics

Conservation: Air Infiltration Reduction 5-10%

Interior Storm Windows: Air Infiltration Reduction 20% Window and Storm 25-30%

Exterior Storm Windows: Air Infiltration Reduction 10% Window and Storm 15-20%



# Air Sealing











# Air Sealing





# Air Sealing







#### Insulation









#### Insulation - The Ballroom











### Insulation - The Ballroom







### Insulation - The Ballroom









### Insulation









### Heating Plant

- Change fuel source Natural Gas
- High Efficiency Furnaces
- Ductwork modifications
- Digital controls





### New HVAC







#### Ductwork









### Ductwork

















#### Heating Component

- Change from oil to natural gas
- Four condensing, modulating gas furnaces / heat pumps
- Room level zone controls
- Pre-work 429 MMBTU (2009/2010)
- Post-work 175 MMBTU (2012-2014)

59% reduction Doubled site utilization (Nov - Apr)



### **Electricity Component**

- Newer air conditioning / heat pump technology
- Room level zone controls
- LED and CFL lighting
- Pre-work 221 MMBTU (2009/2010)
- Post-work 172 MMBTU (2012-2014)

22% reduction (overall) 68% increase in utilization (May - Oct) 40% reduction on a per event basis



## **Energy Metrics**

- Pre-work 2009/2010
  - Average of 650 MMBTU
- Post-work
  - 2012 310 MMBTU (52% reduction)
  - 2013 360 MMBTU (45% reduction
  - 2014 370 MMBTU (43% reduction)
  - Average of 347 MMBTU

#### 47% reduction



### Lessons Learned

- Efficiency can be achieved while respecting historic fabric
- Mechanical system and ductwork improvement resulted in best gain
- Insulation contractors were the least willing to work with us on different approaches



### **Opportunities for Improvement**

- Human behaviors
  - $-68^{\circ}$  heat
  - **-** 75° cool
  - Use of shades for solar gain control
- Additional air sealing
  - Air barrier behind clapboards
  - 3<sup>rd</sup> floor access
- More advanced building controls



#### This concludes The American Institute of Architects Continuing Education Systems Course



