

Is It All Hot Air: Ventilating Homes, Why? How Much? How?

March 2015

Paul W. Francisco University of Illinois at Urbana-Champaign pwf@illinois.edu

> Robb Aldrich Steven Winter Associates, Inc. raldrich@swinter.com

Steven Winter Associates, Inc. NEW YORK, NY | WASHINGTON, DC | NORWALK, CT

INDOOR CLIMATE RESEARCH AND TRAINING

AIA CEU Info

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request. This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Learning Objectives

- Understand health benefits of ventilation, and describe health benefits of ASHRAE 62.2-2010 vs. the older 62-1989
- 2. Understand three core single family home ventilation system approaches (exhaust only, supply only, balanced)
- 3. Describe pros and cons of various ventilation approaches
- 4. Describe energy consequences of alternative ventilation strategies

Health and Environmental Aspects Linked to Home Ventilation (HEALTH-V Study)

Salvatore Cali,¹ <u>Paul Francisco²</u>, David E. Jacobs, PhD, CIH^{1,3}, Loreen Targos¹ William B. Rose², Zachary Merrin², Harold Dawson⁴, Steve Nall⁵, Dan Phillips,⁵ ¹University of Illinois at Chicago (UIC)

²Illinois Sustainable Technology Center, University of Illinois at Urbana-Champaign (UIUC)

³National Center for Healthy Housing

⁴Community and Economic Development Association of Cook County (CEDA)

⁵Indiana Community Action Association, Inc. (INCAA)

Presenter contact: pwf@illinois.edu

Acknowledgements & Disclaimers

This project was supported by the U.S. Department of Housing and Urban Development (HUD Grant Number: ILLHH0230-10), and some of the researchers were partially supported by National Institute of Occupational Safety and Health (NIOSH) Training Grant Number T42/OH008672. The contents of this presentation are solely the responsibility of the authors and do not necessarily represent the official views of HUD or NIOSH.

The Health-V Study received UIC Internal Review Board approval for research involving human subjects, including written participant consent, protocol #2011-0813 "Health and Environmental Aspects Linked to Home Ventilation (HEALTH-V)"

Purpose of study

WHO concluded there is insufficient evidence on ventilation and health outcomes

Look at impacts on health & IAQ associated w/ ASHRAE 62.2-2010 relative to ASHRAE 62-1989 for weatherization in low-income housing.

Two protocols

<u>ASHRAE 62-1989</u>: 15 cfm fresh air/ occupant;

"Building Tightness Limit" (BTL) for infiltration derived from blower door test at 50 Pa depressurization.

If infiltration is enough, no mechanical or additional ventilation needed. In practice, many agencies use(d) BTL as air seal limit guide to avoid mechanical ventilation.

ASHRAE 62.2-2010:

Target is 7.5 cfm fresh air/ occupant **plus** 1 cfm/ 100 ft² floor area.

Usually mechanical ventilation needed. Effective "BTL" much leakier than with 62-1989.

Purpose of study

Test two hypotheses:

- Using a ventilation protocol in weatherization improves health & indoor environment conditions; and
- 2) Adopting ASHRAE 62.2-2010 results in significant health & indoor environment improvements compared with ASHRAE 62-1989.

Methods & materials

- Participants recruited through low-income home weatherization programs in Illinois and Indiana, approximately 84 homes total (n=84).
- Environmental samples collected for 1-week (range 4-7 days) intervals before and after weatherization.
- Health interviews collected at baseline & approximately 6 months after weatherization

Methods & materials

- 1-week interval air sample tests, pre- & post weatherization:
 - Passive air samples for
 - formaldehyde
 - total volatile organics (TVOCs)
 - Radon in both 1st flr LR & basement
 - Passive time-series loggers
 - Carbon monoxide
 - Carbon dioxide
 - Moisture

Leakiness (cfm50)

	Pre-Wx	Post-Wx
ASHRAE 62-1989	3,009	2,153
ASHRAE 62.2-2010	3,021	2,141

House ventilation

- No homes hade automated mechanical ventilation pre-Wx
- No 62-1989 homes received mechanical ventilation
- All 62.2-2010 homes received mechanical ventilation, average 60 cfm – ALL EXHAUST

Formaldehyde

Formaldehyde	Number (n)	Mean (ppb)	Geo-mean (ppb)	T-test p-value
Pre-Wx all	71	31	28	0.002
Post-Wx all		25	23	0.002
Pre-Wx 62-1989	30	34	31	0.010
Post-Wx 62-1989		27	25	0.019
Pre-Wx 62.2-2010	41	29	26	0.044
Post-Wx 62.2-2010		24	21	0.041

Yellow indicates statistical significance

TVOC

TVOC	Number (n)	Mean (ppb)	Geo-mean (ppb)	T-test p-value
Pre-Wx all	68	290	163	0.190
Post-Wx all		203	134	0.180
Pre-Wx 62-1989	31	242	124	0.000
Post-Wx 62-1989		200	124	- 0.989
Pre-Wx 62.2-2010	37	330	204	0.044
Post-Wx 62.2-2010		205	142	- 0.041

Radon, 1st floor

Radon	Number (n)	Mean (pCi/l)	Geo-mean (pCi/l)	T-test p-value
Pre-Wx all	46	2.7	1.8	0 1 4 2
Post-Wx all		2.6	1.4	0.143
Pre-Wx 62-1989	21	2.4	1.7	0.004
Post-Wx 62-1989		2.8	1.6	- 0.824
Pre-Wx 62.2-2010	25	3.0	1.9	0.067
Post-Wx 62.2-2010		2.4	1.3	0.067

Preliminary results

Radon, basement

ТУОС	Number (n)	Mean (pCi/l)	Geo-mean (pCi/l)	T-test p-value
Pre-Wx all	51	5.1	2.6	0.320
Post-Wx all		6.0	3.0	0.330
Pre-Wx 62-1989	23	6.3	3.0	0.000
Post-Wx 62-1989		6.7	2.9	0.888
Pre-Wx 62.2-2010	28	4.2	2.4	0.072
Post-Wx 62.2-2010		5.4	3.1	0.073

Carbon dioxide (CO₂)

TVOC	Number (n)	Mean (ppm)	Geo-mean (ppm)	T-test p-value
Pre-Wx all	66	985	914	0.005
Post-Wx all		839	797	0.005
Pre-Wx 62-1989	29	970	888	0.266
Post-Wx 62-1989		849	810	0.266
Pre-Wx 62.2-2010	37	996	936	0.004
Post-Wx 62.2-2010		830	787	0.004

Yellow indicates statistical significance

Health Outcomes

- Children experienced fewer headaches

 Statistically-significantly fewer in 62.2-2010 homes
- Fewer respiratory ailments in children, not statistically significant
- Reductions in eczema and skin allergies in children in both groups, difference between groups not statistically significant

Health Outcomes

- Adults had less psychological distress

 Difference between groups not statistically significant
- Statistically-significant improvement in reported overweight adults in 62.2-2010 homes relative to 62-1989 homes

Conclusions

- 62.2-2010 homes had statisticallysignificant reductions of formaldehyde, TVOCs, and carbon dioxide (p < 0.05)
- 62.2-2010 homes had near-statisticallysignificant increases of basement radon and decreased of first floor radon (p < 0.1)
- 62-1989 had nothing statisticallysignificant except for formaldehyde reductions

Conclusions

- No contaminants showed statisticallysignificant contaminant differences between groups
- Except for basement radon, 62.2-2010 homes showed greater reductions that 62-1989 for all contaminants
- Lack of statistical significance MAY be real, or may be insufficient sample size

Conclusions

• Few health changes were statistically significant, some indication of greater improvement with 62.2-2010 relative to 62-1989

Selecting Ventilation Systems for Homes

Robb Aldrich Steven Winter Associates, Inc. raldrich@swinter.com

Types of Mech. Ventilation

Local Exhaust:

Whole-Building Ventilation

"Whole-building ventilation is intended to dilute the unavoidable contaminant emissions from people, from materials, and from background processes." (ASHRAE 62.2-2013)

Contaminants don't just come from bathrooms and kitchens.

Whole-House Ventilation

Three main types

- Exhaust only
- Supply only
- Balanced

Exhaust Only Ventilation

Efficient bath exhaust fan(s) running continuously or on timer

9:00-

Major concern with Exhaust Only: Where does make-up air come from?

Potential Make-Up Air Problems

Exhaust Only Cons

• Source of makeup air

Lack of distribution/mixing

Exhaust Only Pro's

- Simple!
- Easy installation
- Low cost
- Low maintenance
- Low power

 (best fans 6-12 Watts)

Supply Only Ventilation

Comfort!

Central Fan Integrated Supply (CFIS) Ventilation

CFIS

Advantages:

- Good distribution
- Relatively low first cost
- Modest maintenance

Disadvantages:

- Electricity use of AHU (200 – 1100 Watts)
- Duct losses

Balanced Ventilation ERV / HRV

Two Main Types

Cross-Flow HX

Cross-Flow HRV

ERV Wheels

ERV / HRV

Heat Recovery Ventilator (HRV)

• Sensible heat only (temperature)

Energy Recovery Ventilator (ERV)

- Sensible heat (temperature)
- Latent heat (humidity)

HRV vs. ERV

ERVs transfer moisture, but they are **NOT DEHUMIDIFIERS!**

ERV in Cold Weather

ERV/HRV in Cold Climates

Large home, low density, not much activity or moisture generation...

Small apartment, high occupancy, lots of activity, moisture...

HRV & ERV Integration

- Exhaust from bathrooms?
- Dedicated duct system?
- Integrate with central duct system?

E/HRVs with Central AHUs

E/HRVs with central AHUs

E/HRVs with central AHUs

Dedicated ducts for at least one side (supply or exhaust)

HRV's & ERV's

Benefits:

- Heat recovery
- Balanced ventilation
- Distributed fresh air (often)
- Known source of outdoor air

Disadvantages:

- First cost
- Maintenance
- Integration issues
- Elec. use (35 150 W)

ERV Maintenance

Monitoring ERVs in new Homes:

- Growing power consumption
- Lower flow rates

Intakes blocked in 6-8 months

Maintenance is key!

BA Guidelines

Guidelines: <u>www.buildingamerica.gov</u> "Publications"

http://apps1.eere.energy.gov/buildings/publications/p dfs/building_america/measure_guide_ventilation_syste ms.pdf

Questions?

Paul W. Francisco University of Illinois at Urbana-Champaign pwf@illinois.edu

Robb Aldrich Steven Winter Associates, Inc. raldrich@swinter.com

Make-Up Air

Make-Up Air

Problem: Makeup air required for kitchen hoods > 400 CFM

Solution: Do you really need a kitchen hood with flow > 400 CFM?

- Motorized damper (passive)
- Motorized damper + fan
- ... + resistance heat

Passive Vents

Trickle Vents

Wall Vents

Trickle Vent Example

Building America study:

40-90 CFM exhaust

<u>http://apps1.eere.energy.gov/buildings/publications/pdfs/</u> building_america/ventilation_multifamily_buildings.pdf

What level is realistic?

Distribution example: Greenfield, MA

Heating System – First Floor

Heating System – Second Floor

Tracer Gas Testing

Tracer Gas Testing

Tracer Gas Testing

Costs

System	Description		
No Ventilation	NA		
Exhaust Only Single 10W fan, 60 CFM			
CFIS	250W AHU fan, 100 CFM, 14 h/d		
HRV	40W, 60 CFM, 24 h/d, 70% SRE		

- New home, Boston climate
- 60 CFM continuous or equivalent
- Condensing gas furnace (94% eff.)
- SEER 13 AC
- No duct leakage
- \$0.20/kWh
- \$1.50/therm

Incremental Costs				
System	Equip.	Install	Total	Op. Cost
None	\$0	\$0	\$0	\$0

Incremental Costs				
System	Equip.	Install	Total	Op. Cost
None	\$0	\$0	\$0	\$0
Exhaust	\$50 - \$150	NA	\$100	\$79

Incremental Costs				
System	Equip.	Install	Total	Op. Cost
None	\$0	\$0	\$0	\$0
Exhaust	\$50 - \$150	NA	\$100	\$79
CFIS	\$150	\$400	\$550	\$232

Incremental Costs				
System	Equip.	Install	Total	Op. Cost
None	\$0	\$0	\$0	\$0
Exhaust	\$50 - \$150	NA	\$100	\$79
CFIS	\$150	\$400	\$550	\$232
HRV	\$700 - \$2,500	\$1,500	\$2,500	\$104

Example only! Costs & systems vary tremendously.

Testing/Commissioning

Ventilation Commissioning

- Check that things work!
- Look at Systems.

 Fans turn on, dampers open when they're supposed to.

Ventilation Commissioning

Check that things work!

• Equipment, air intakes accessible for maintenance

• Measure Flow

Maintenance!

- Clean air intakes (indoors and outdoors)
- Filters
- Dampers/motors
- Heat exchange media
- Manufacturer instructions