Safe humidification?

Humidified Buildings Cold Climates

Mold when it's hot and humid, out

Condensation in the enclosure - Hot and humid outside

August 6

S Janes

Mold in a wall cavity – outdoor air accidentally drawn into wall from attic by return plenum leaks.

Calendar acts as accidental vapor retarder on cool side of wall during cooling conditions

Design to Dehumidify

Design HVAC using ASHRAE Humidity Control Handbook

Speaker Name

Correctly Sized AC Cools and Dehumidifies 0.03 0.025

2X oversized AC cools but does not dehumidify 0.03 0.025 50 40 40 0.0**1**€ OA Temperature OA RH Indoor Temperature 0.005 Indoor RH **OAHR** Indoor HR Hours

HVAC Design

Equipment Design

•55° F indoor dew point

•Use ASHRAE peak outdoor dew point for humidity control design (not peak temperature)

• Don't oversize cooling—it leads to major problems

Air-side Design

Exhaust humid air and provide DRY makeup air
Avoid plenums—Use sealed duct work instead

•Seal ALL duct connections, using mastic

HVAC

 Meet ASHRAE 62.1 air handler design criteria
 Air handlers and ductwork inside the enclosure

August 6

Speaker Name

ASHRAE peak dew point design data

Figure 2-17 Peak Dew Point Data are Available in the Climatic Design Information Chapter of the ASHRAE Handbook-Fundamentals

Moisture Control Principles For Construction

- 1. Things get wet during construction That's life. But the building **must dry out**.
- 2. Understand the **purpose** of moisture-related design details.
- **3. Installation** is often more important than design.
- 4. The sequence of installation matters—a lot

Construction

Planning

• Provide rainprotected storage for wall board

•Trade coordination meetings for air and water barrier installation sequence

Installation

• Pressure-test plumbing, air ducts and roof-wall air barrier joint BEFORE interior walls and ceilings are installed.

•Dry out concrete and masonry block before walls are installed.

Moisture Control Principles For Operation and Maintenance

- Principles are less useful for maintenance personnel than component-specific checklists. Generate checklists and use them:
- a. Site and foundation drainage
- b. Walls and roof leaks
- c. Plumbing leaks and HVAC filters

Troubleshooting checklist

Table 4-1 Troubleshooting Common Indoor Water Problems

SYMPTOMS	MOISTURE PROBLEM	POTENTIAL CAUSES		
		DESIGN	CONSTRUCTION	O&M
Mold growth	Leaks in the building enclosure due to problems with rain and groundwater controls	Missing or poorly designed details	Missing flashing or building wrap Incorrect sloping Damaged sub-grade drainage	Failure to identify and repair settled grading near foundation Damaged flashing on rooftop air handler curb Missing shingles
	Insufficient dehumidification by HVAC system ^{®)}	Air conditioning equipment oversized	Failure to properly wire humidity sensors	Chilled-water temperature set-point too warm
		Air conditioning equipment not designed for sufficient dehumidification at design and part load		Economizer set-point that allows introduction of humid outdoor air
				Continuously running air handler regardless of cooling demand
	Condensation on dirty surfaces inside HVAC systems	Poor condensate drain design		Failure to clean HVAC system cooling coils
	A	Air handler inside surfaces insulated or hard to clean		Clogged drain pan
	Wet materials enclosed in building assemblies	Moisture-sensitive materials shown touching porous materials that are likely to get wet No values for moisture content or emission given in the specifications	Flooring placed on slab while it is too damp Vapor emission tests on slab may not have been conducted	Failure to seal penetration during maintenance, repai or installation of new equipment
Peeling paint Wood decay Corrosion	Leaks in the building enclosure due to problems with rain and groundwater controls	Missing or poorly designed details	Missing flashing or building wrap Incorrect sloping Damaged sub-grade drainage	Failure to identify and repair settled grading near foundation Damaged flashing on rooftop air handler curb Missing shingles
Plumbing leaks and spills	Improper design Improper installation during construction Improper operations and maintenance practice	Locating water lines in a space that reaches freezing temperatures Poorly designed shower pan	Defective pipe joining Accidental penetration of pipe by one or more drywall screws	Failure to inspect plumbing and repair problems
Water travels to materials that cannot tolerate wetting	Capillary action (water wicks through porous building materials such as concrete or wood)	Moisture barrier omitted from building design Drainage layer beneath slab omitted from building design	Moisture barrier not installed during construction Drainage barrier not installed during construction	

Operation and Maintenance

Drainage

•Keep water away from the foundation (rain leaders and finish grading)

• Make sure irrigation does not spray the building or puddle at the foundation

HVAC + Plumbing

• Install clean outside air filters (monthly)

• Check damper positions and adjust outdoor air flow (annually)

• Drips and condensation matter—fix them and dry up any water

Summarizing Guidance from EPA

- 1. Each stage of design, construction and operation has specific decisions that increase—or reduce risk of problems.
- 2. Design
 - a. Foundation drainage including roof rain runoff management
 - b. Walls with rain screen, water barrier and and pan flashing for windows
 - c. Peak ASHRAE dew point for ventilation system design
- 3. Construction
 - a. Rain-protected storage
 - b. Subcontractor coordination for water/air barrier/flashing installation
 - c. Pressure-test systems before installing interior walls and ceilings

Making Buildings Airtight Identify a target air tightness level Design to make them airtight Training, inspection, and quality assurance programs Conduct intermediate and final pressure testing Fix it and retest as needed

Design

- Identifying air barrier locations
- Making it easy/making it hard
- Air barrier materials and systems
- Provide details and specifications illustrating air barrier continuity at joints and penetrations
- Specify inspections, qualifications, QA and intermediate and final testing
- Air Barrier Association of America (ABAA)
 - Manufacturers
 - Contractors
 - J QAP

Assess section for condensation and drying potential, given climate and internal loads.

Air Barrier Association of America

- Understand the concept of Air Barrier Systems
- Design Air Barrier Systems
- Specify Air Barrier Systems in your Building Enclosure
- Locate Manufacturers and Distributors of Air Barrier Materials
- Locate Contractors who Install Air Barrier Assemblies and Systems
- Incorporate ABAA's Quality Assurance Program into your Project
- <u>http://www.airbarrier.org/index_e.php</u>

Location of air barrier around Media Center

2/25/10 7

A304

Get it in the specs

 Division 01; general requirements for hygrothermal control; coordination; testing
 Division 03; 04, 06, 09 concrete, CMU, sheathing surface prep

Division 07; dampproofing, waterproofing, air barriers, vapor retarders, roofing, flashing, thermal insulation, sealants

Division 08; doors, hatches, skylights, windows

Field Visits

Kick-off: air barrier and moisture control requirements, mock-ups, inspections and tests described to all parties
Inspections: General, subs, third party
Mock-ups – inspection, testing
Final Airtightness Test

Inspections and QA

Commissioning agent - periodic Completed work and work in progress Observe or conduct QA tests on installed material Examine work logs Prime Contractor QA personnel – daily inspections Sub-contractors Daily inspections, QA tests and documentation

Testing: what needs to be specified?

Qualifications of testing agency What must be provided by the contractor The purpose of the test Test Method The target specification The boundaries, location, sampling procedure Conditions that must be met before a test can be conducted How the test result is interpreted: Confidence intervals Passing/failure Report-retest?

Required enclosure function testing E2813-12 (black enhanced only, red enhanced and fundamental, blue fundamental only)	Laboratory test	Mock-up	In-situ field test
Acoustic performance		ASTM E966, E1014, E1503	
Air infiltration	ASTM E283	ASTM E783	ASTM E779, E1827, E783, E1186
Thermal performance and condensation resistance			ASTM C1153
Water penetration	ASTM E331	ASTM E1105; AAMA 501.2	ASTM D5957, E1105; AAMA 501.1, 501.2
Durability and appearance		ASTM D4541, E2359, C794, C1193 appendix X1-A; E488	ASTM D4541, E2359, C794, C1193 appendix X1-A; E488
Structural performance	ASTM E330		
Rain screen pressure equalization	AAMA 508- 07		
Solar optical performance			
Moisture content			
Security			

QA testing

Air Barrier Association of America

ABAA QAP Program

- Based on ISO9000
- Standards and specifications
- Product evaluation and acceptance
- Contractors accredited
- Certification of installers
- Daily inspections, tests and logs
- Third party Field audits

Inspections are crucial

1

A. A. P. A. P. P. P. P.

E

11/09/2008

ActivGARD

T

00

Jar .

Intermediate test

Planning and Conducting a Whole Building Airtightness Test

Planning
Prepare the building
Setup equipment and conduct test
Analyze data

Write the report

Fan Pressurization Airtightness Test

Multipoint regression test E779, USACE

Regression analysis on Transformed Nonlinear Function: (E779) $Q_{cfm} = C^* (\Delta P_{pascals})^n$

Where C = flow coefficient $n = flow exponent (0.5 \le n \le 1.0)$

If it takes three fans to get to 25 Pascals it will take less than three to get to 50.

This is a simplification. Air density and viscosity also affect flow and the leakage curve really isn't a power law.

Repeated Tests at the reference induced pressure difference. E1827

Planning

- New, unoccupied buildings/Occupied buildings
- Identify parties
- Select date
- Identify Test Enclosure Boundaries
- Identify HVAC equipment that must be turned off and penetrations that must be sealed

Identify Parties

Owner Building Management Security – determine security procedures to protect property and privacy Health and Safety Fan testing team HVAC control person (contractor or inhouse)

Select Date

When the fewest people are in the building – weekends, holidays During the test you need: Access to all rooms, mechanical rooms, locations where HVAC penetrations must be masked HVAC controls contractor Power for test fans

Test Enclosure Boundaries, Airflow Needed and Fan and Pressure Tap Locations

- Double check boundaries and enclosure areas specified in design drawings
 How much air do I need?
- Inspect the geometry for interior barriers to good pressure distribution
- Locate fans to provide uniform pressure distribution
- Locate interzonal pressure taps to document uniform pressure distribution

Sketchup models to identify test enclosure location and areas

How much air do I need?

Maximum leakage rate specified Bring enough to induce the specified pressure difference with the specified flowrate E.g. Area enclosure (ft2) x 0.25 cfm/ft2 at 75 pascals (ACE spec) 0.6 ACH x enclosure volume (ft3) / 60 m/hr (passiv haus) Ordinary construction 0.2 – 1.2 cfm/ft2 at 75 pascals; ?

South Building Fan Pressure Test

Prepare the Building

- If the whole building is one test zone
 - Close exterior doors and windows
 - Open interior doors
- If the test zone is a portion of the whole building
 - Close exterior doors and windows
 - Isolate test zone from surrounding building
 - Close doors
 - Tape off supply diffusers and return grilles that connect to ducts or equipment outside the test zone
 - Determine whether adjacent zones should be open to outdoors or closed
- Close or mask outdoor air intakes and exhaust outlets
 - Dampers
 - Gravity dampers
 - Plastic, foam board and tape

Block interior doors open In occupied buildings this may present an unacceptable security issue

Identify and seal HVAC related enclosure penetrations

Intention... Outdoor air intakes Exhaust systems Passive relief Steam vents Dampers: Motorized, gravity, none Fan runs continuously? Elevator vents and kitchen range hoods – no dampers

Dampers closed

25

254

C151

11-050

20

No dampers, gravity dampers, motorized dampers, masking?

During pressurization tests gravity dampers blow open.

Interzonal Pressures

Measure to check for pressure uniformity

 Identify Suspected Pressure Drops
 Measure or Monitor Interior pressure differences
 USACE and ASTM E779 require no two spaces differ by more than 10% of test pressure (wording not clear)

