

Our Learning Objectives

Relative impacts of the various life cycle stages

An understanding of the importance of energy consumption

A basis on which to compare material choices (e.g. uPVC vs. wood windows)

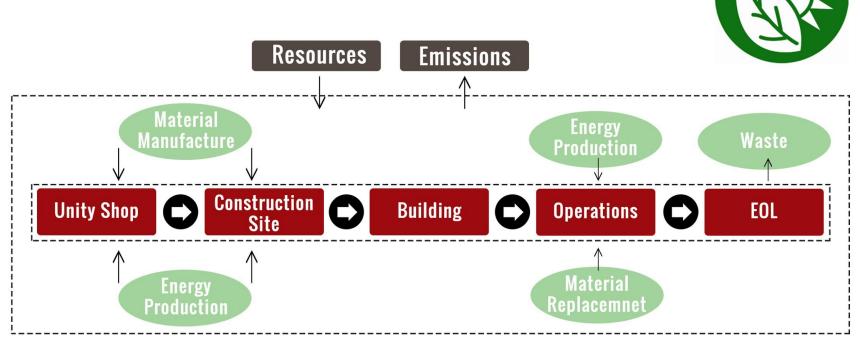
Phases of a Life Cycle Assessment

Goal and Scope Definition

Inventory

Impact Assessment

Interpretation


Impact Categories

- Global Warming Potential
- Acidification Potential
- Eutrophication
- Ozone Depletion
- Smog Formation

- Human Health-Carcinogenic
- Human Health, Non-Carcinogenic
- Human Health, Respiratory
- Ecotoxicity

System Diagram

Building Scenarios

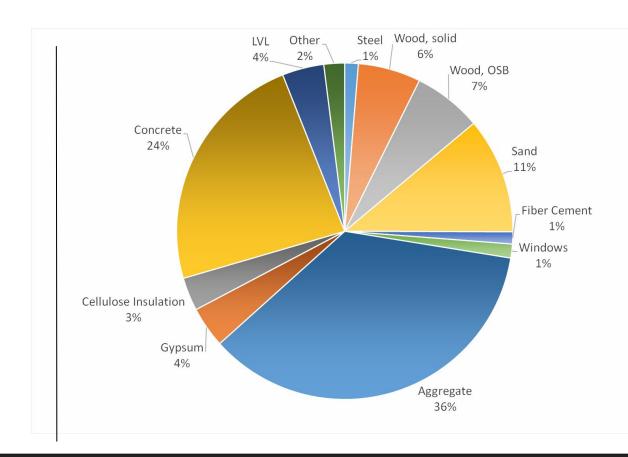
Optimistic Assumptions: Most efficient appliances, long material lifespans.

As Designed: 50 year building lifespan, modeled energy consumption, Unity estimates of appliance use.

Extended Building Lifespan

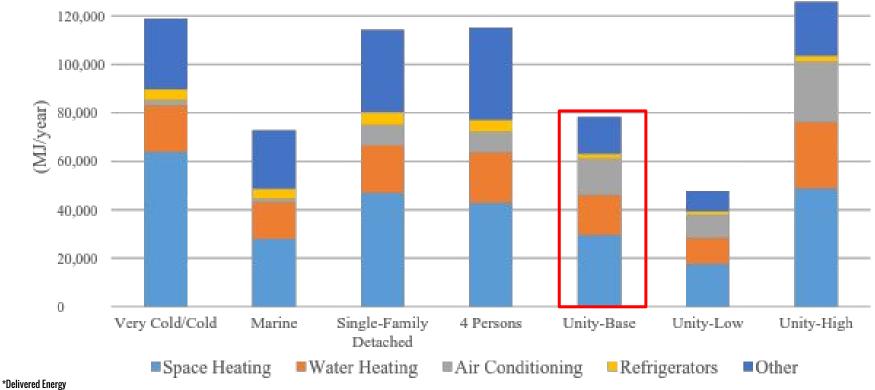
Typical New England: High heating and cooling loads, conservative material lifespans

Extended Building Lifespan



Building Materials

Weight of all Material:


133 Metric Tons

140,000 Annual Household Energy Consumption (MJ)

^{*}Delivered Energy
*non-Unity energy use data from 2009 Residential Energy Consumption Survey (RECS 2009)

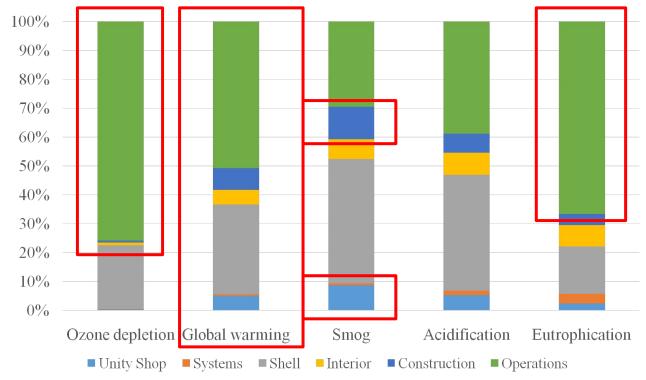
Household Energy Use (Annual)

Use Category	Scenario (kWh)			
	Low	Base	High	
Domestic Hot Water	880	1,658	3,355	
Heating Load	2,836	2,944	5,672	
Cooling Load	108	841	1,261	
Lights & Appliances	2,713	5,503	6,854	
Total Heat Pump	3,825	6,100	10,525	
Heat Pump Output (MJ)	36,719	58,563	101,053	

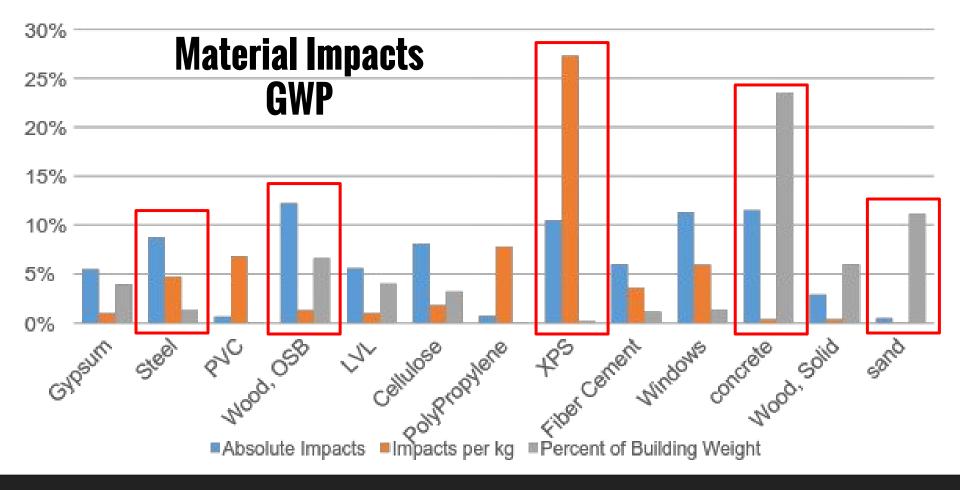
Material Replacement Rates

Scenario (value in years)

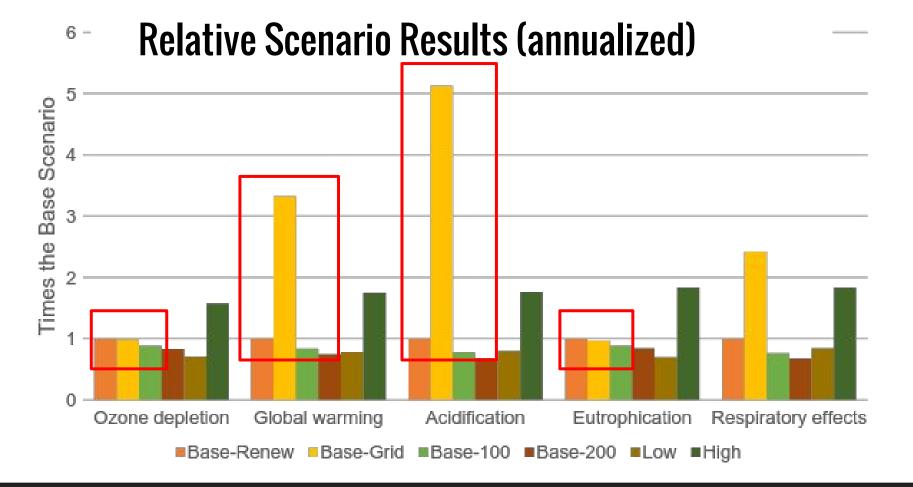
Material	Base	Low	High
Whole building	50	50	50
Exterior, paint	8	10	5
Mechanical, solar panels	30	30	30
Windows	30	50	15
Bathroom, sink	20	30	10
Appliances, washer	12	25	7

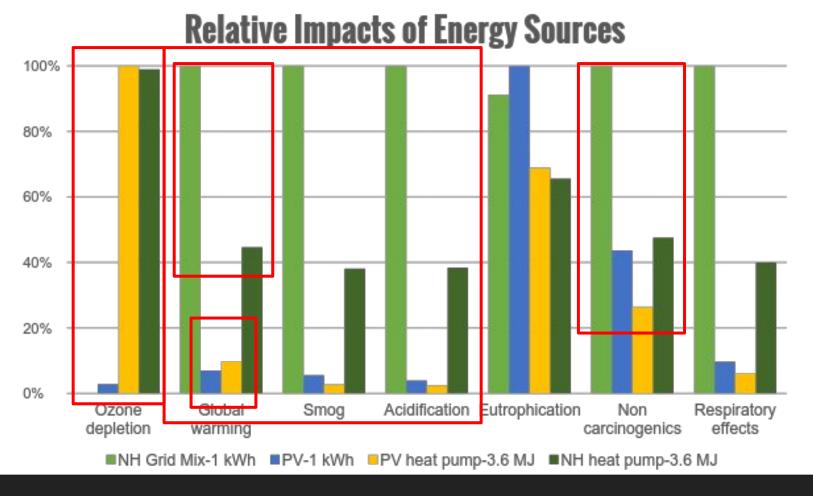

Fate of Materials at End-of-Life

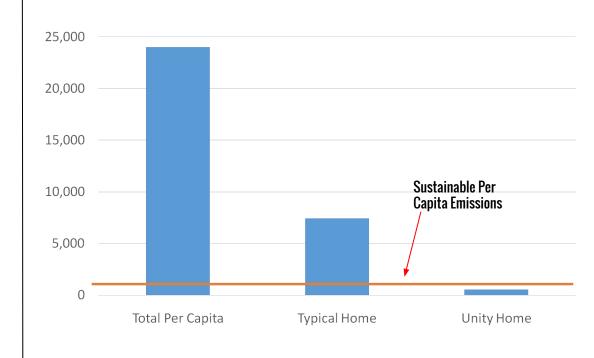
Material	Reuse F	Recycle [Dispose
Steel	0%	81%	19%
Timber	75%	0%	25%
Wood, OSB	0%	0%	100%
Concrete	0%	80%	20%
Cellulose Insulation	0%	80%	20%



Contribution by Life Cycle Stage







Comparison to National Emissions

Impact Category	Units	Per Capita Emissions	Unity Zum Fraction
Global Warming	kg CO2 eq	24, 000	2.28%
Ozone Depletion	kg CFC-11 eq	0.16	0.97%
Acidification	kg SO2 eq	91	4.05%
Eutrophication	kg N eq	22	2.65%
Respiratory Effects	kg PM2.5 eq	24	1.46%

Our Home Sustainable

Wood Metal PVC a Showdown

- Thermal performance: Critical
- Materially speaking Wood < PVC < Wood Clad < Metal
- Finishing and lifespan matter!
- Some of the old health concerns are diminishing
- Not all PVC is created equal, do your due diligence
- Consider cost

Our *"Aha"* Moments

Long-term operational energy use has the highest environmental impact of any categories. As energy use reduces - impacts shift to materials.

High performance building envelopes that last = a strong strategy for reducing environmental impact.

Extruded polystyrene can be an ozone depleting hog.

Not all vinyl windows are bad. All wood windows are typically best, followed by vinyl, then wood/aluminum clad, with all metal at the rear.

Questions to Ponder

Is an industry average of averages the right way to truly evaluate life cycle impacts for individual structures?

Is any given product/material better just because other related products/materials are worse?

Is there another metric or rubric that would be more helpful in determining a building's impact on heath & the environment?

Thank You

Rheannon DeMond

Energy Analyst, Assistant Project Manager

Bensonwood & Unity Homes

rheannon@bensonwood.com

Ben Morelli Masters in Environmental Managment

Environmental Analyst, Specializing in LCA

Eastern Research Group

bnjmnmorelli@gmail.com

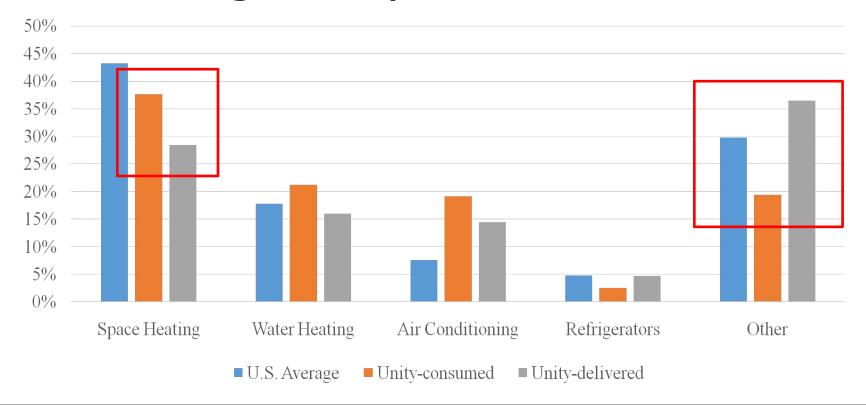
Danny Veerkamp

MBA in Sustainability

Project Steward

Bensonwood & Unity Homes

danny@bensonwood.com



Fraction of Energy Consumption by End-Use

Solar PV Assumptions

Material Replacement Rates

Scenario (value in years)

Material	Base	Low	High
Whole building	50	50	50
Exterior, roofing	50	50	50
Exterior, paint	8	10	5
Exterior, Fiber Cement Siding	100	100	50
Exterior, doors	30	75	20
Roofing Insulation	100	100	100
Cellulose Insulation	100	100	100
Windows	30	50	15
Light fixtures	10	25	10
Bathroom, toilets	20	30	10
Bathroom, sink	20	30	10
Bathroom, Shower	20	30	10
Bathroom, tub	50	100	25
Bathroom, fixtures	20	30	10
Mechanical, Heat pump	20	20	20

Material Replacement Rates (cont.)

	Scenario (value in years)		rs)
Material	Base	Low	High
Mechanical, solar panels	30	30	30
Mechanical, hot water heater	25	30	15
Mechanical, ducting	75	75	75
HRV	20	25	15
Plumbing, pipe	50	75	50
Kitchen, countertop	75	100	25
Kitchen, refrigerator	20	30	15
Kitchen, oven	16	25	10
Kitchen, dishwasher	12	25	7
Interior, doors	100	100	25
Interior, drywall	75	100	50
Interior, paint	10	10	5
Floor, tile	75	100	25
Floor, wood	100	100	30
Appliances, dryer	14	25	7
Appliances, washer	12	25	7

Fate of Materials at End-of-Life

Material	Reuse	Recycle	Dispose
Steel	0.00%	81.30%	18.70%
Timber	74.99%	0.00%	25.01%
Wood, solid	53.61%	0.00%	46.39%
Wood, OSB	0.00%	0.00%	100.00%
Sand	80.00%	0.00%	20.00%
Aggregate	79.68%	0.00%	20.32%
Gypsum	0.00%	0.00%	100.00%
PolyPropylene	0.00%	0.00%	100.00%
Concrete	0.00%	80.00%	20.00%
Extruded Polystyrene	0.00%	0.00%	100.00%
Cellulose Insulation	0.00%	80.00%	20.00%
PolyUrethane	0.00%	0.00%	100.00%
LVL	0.00%	0.00%	100.00%
Ceramic Tile	0.00%	0.00%	100.00%
PolyEthylene	0.00%	33.88%	66.12%
PVC	0.00%	0.00%	100.00%
Fiber Cement	0.00%	0.00%	100.00%
Ceramics	0.00%	0.00%	100.00%
Rubber	0.00%	0.00%	100.00%
Adhesive, sealant	0.00%	0.00%	100.00%
Adhesive, tape		excluded	
Paint	0.00%	0.00%	100.00%
Doors	0.00%	0.00%	100.00%
Windows	0.00%	0.00%	100.00%

Impact Category	t Category Process Contribution Contribution to Impact	
Ozone Depletion	Refrigerant production	93.05%
	Energy System	48.42%
	Heat pump	17.37%
Global Warming	Material production	19.08%
	Transport/Machine operation	11.63%
	Other	3.50%
	Medium density fiber board	32.66%
Ttuo alti onti o a	Wood ash disposal	13.59%
Eutrophication	Mining/Metal Processing Waste	43.36%
	Other	10.40%
	Metal Production	17.46%
Nan Causinasan	Mining Waste	53.27%
Non-Carcinogens	Other waste disposal	5.40%
	Other	23.87%

